80/312/FDIS

FINAL DRAFT INTERNATIONAL STANDARD
PROJET FINAL DE NORME INTERNATIONALE

Project number
Numéro de projet

IEC 61162-420 Ed.1

IEC/TC or SC CEI/CE ou SC Secretariat / Secrétariat

TC 80

United Kingdom

|X| Submitted for parallel voting in CENELEC
Soumis au vote paralléle au CENELEC

Distributed on / Diffusé le

2001-08-24

Voting terminates on / Vote clos le

2001-10-26

Also of interest to the following committees
Intéresse également les comités suivants

Supersedes document
Remplace le document

80/263/CDV - 80/297/RVC

Functions concerned
Fonctions concernées

|:| Safety |:| EMC

Sécurité CEM

[

Environment |:| Quality assurance
Environnement

Assurance de la qualité

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Title

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

Maritime navigation and radiocommunication equipment and systems - Digital
interfaces - Part 420: Multiple talkers and multiple listeners - Ship systems
interconnection - Companion standard requirements and basic companion

standards

Titre

ATTENTION
VOTE PARALLELE
CEl — CENELEC

L'attention des Comités nationaux de
membres du CENELEC, est attirée sur le fait que ce
projet final de Norme internationale est soumis au
vote paralléle. Un bulletin de vote séparé pour le vote
CENELEC leur sera envoyé par le Secrétariat Central

du CENELEC.

THIS DOCUMENT IS A DRAFT DISTRIBUTED FOR APPROVAL. IT MAY NOT BE REFERRED TO AS AN INTERNATIONAL STANDARD UNTIL PUBLISHED AS SUCH.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, FINAL DRAFT
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH
REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

CE DOCUMENT EST UN PROJET DIFFUSE POUR APPROBATION. IL NE PEUT ETRE CITE COMME NORME INTERNATIONALE AVANT SA PUBLICATION EN TANT

QUE TELLE.

OUTRE LE FAIT D'ETRE EXAMINES POUR ETABLIR S'ILS SONT ACCEPTABLES A DES FINS INDUSTRIELLES, TECHNOLOGIQUES ET COMMERCIALES, AINSI
QUE DU POINT DE VUE DES UTILISATEURS, LES PROJETS FINAUX DE NORMES INTERNATIONALES DOIVENT PARFOIS ETRE EXAMINES EN VUE DE LEUR

la CEl,

ATTENTION
IEC — CENELEC
PARALLEL VOTING

The attention of IEC National Committees, members
of CENELEC, is drawn to the fact that this final Draft
International Standard (DIS) is submitted for parallel
voting. A separate form for CENELEC voting will be
sent to them by the CENELEC Central Secretariat.

POSSIBILITE DE DEVENIR DES NORMES POUVANT SERVIR DE REFERENCE DANS LES REGLEMENTATIONS NATIONALES.

© International Electrotechnical Commission

FORM FDIS (IEC)/FORMULAIRE FDIS (CEl)
2001-07-01

-2- 61162-420/FDIS O IEC(E)

CONTENTS

FOREWORD ...ttt et e et e et e et e e et e et e e en e e an s ean s e ad e aa s e eannesneaees 6
INTRODUGCTION L.ttt ettt ettt et e e e e e ee s e a e e e e s e eenas 8
SCOPE AN ODJECT ..o e e SR 9
NOrmMative refEreNCES ... o e e e e 10
[T 1 o V11T o T P 10
3.1 Terms and abbreviations..........oooiii i e 10
3.2 General typographical rules in this standard 12
4 General principles for the PCS .. . e e, 12
4.1 General STTUCKUNE ... oo e e e 12
g g O U oY 1= PP 12

4.1.2 Components 0f the PCSDL......couiiiii i i 12

4.1.3 Object based principles in the PCSDL tiiu.cvviiiiiiii e, 13

4.1.4 Generic and manufacturer specific companion standards 14

4.1.5 Generic companion standards (PFS)c....cooi i 15

4.1.6 Manufacturer specific companion standardscooceviiiiiiii i, 15

4.1.7 Guidelines for using PCS ... i 16

4.2 Products Of the PCS. ... i e 17
4.2 MAU NAME oo e 17

4.2.2 INterface NAMEo e 17

4.2.3 Interface Class NAME .. ciiun it 17

4.2.4 Dataobject Name ... 18

4.2.5 Data object fUNCHON ..o 18

4.2.6 DataobjeCt sStruCtUre........ccoviini i 18

4.2.7 Data object information contentsccccoiiiiiiiiiii 18

4.2.8 Run-time library information itemsccoooiiiiii 18

4.2.9 PFS information ite€msc.iiiiii 19

4.3 The PISCES foundation specifications (PFS)........cooiiiiiiiiiiii e 19
4.4 Genericinterfaces in the PFS.. ... 19
5 The companion standard reference specificationccocooiiiiiii i 19
5. INErOAUCHION. ... e 19
5.2 Basic concepts of the PCS ... 20
5.3 Conventions for companion standard specification files ... 21
5.3.1 General PrinCiples ... 21

5.8, TOKBNS . e e 21

5.3.3 NAmMeE StrUCIUIE ..oee s 23

LT B S = T g =TT oo o 1S 23

5.3.5 Configurable identifiers and literalccooiiiii 24

5.4 General structure of PCS specifications ... 24
B4 GENEIAl . 24

5.4.2 The specification header ... 25

5.4.3 The specification bOdy........couiiiiiii 26

61162-420/FDIS O IEC(E) -3-

5.5 Application specifications ... 26
ST T B O 1Y T S P 26

5.5.2 General 1ayouUl... ... e e 26

5.5, HeEAr i 27

5.5.4 BOAY .ot e e 28

5.6 Interface component specifications ... 30
ST T B O 1Y TP U 30

5.6.2 General layOuULl... ... e e 31

5.6.3 Header specification........ ..o 31

5.6.4 Body SpecCifiCation ..o e 32

5.7 Information specifications. 33
ST A B © 1Y T U 33

5.7.2 General 1ayoul.... ..o e 33

B 7.3 HeEAr . e s 34

5.7.4 BOAY .o 34

5.8 DaAA Iy PO et e e e e 35
5.8 OVEIVIBW o 35

5.8.2 General 1ayouULl.. e 35

5.8.3 Heaer o e e 36

B5.8.4 BOAY et e 36

6 PISCES foundation specification (PFS)l e 38
6.1 INtrOAUCHION . e o e 38
6.2 NaMING CONVENIONS .. it e et e e e e e e e e e e aenns 39
6.3 APPHCAtION ClasSSES ..iuiiiiiiii i e 39
6.3.1 INtrodUCTION .. oo i e 39

6.3.2 Application base class: PACApplicationcccoiiiiiiiiiii e 40

6.3.3 LNA MAU application: PACLNA ... 40

6.3.4 Managed applications: PACFullApplicationcoooviiiiiiiiiieeeen 40

6.3.5 IEC 61162-1 and IEC 61162-2 interface application: PACNMEARelay......... 40

6.3.6 Console application: PACCONSOIEoiviiniiiieie e 40

6.3.7 General alarm and monitoring application: PACServerAppcccoceveveeneennns 40

7 Specification requirements for PCS compliant applicationsccoooviiiiiiiiicnnnnns 41
7.1 Introduction and general documentation format ... 41
7.2 FUNCHON DlOCK ..t e 41
7.2.1 Function block graphical VIEW ..o 41

7.2.2 Physical effectS ... 41

7.2.3 Input variables ... s 41

7.2.4 Output variableso 42

7 2.5 EVENES oo e 42

42 < R 0o] 122 0 =T o Lo £ 42

A7 A <] -) (1 1< S 42

T.2.8 Parameters oo e 42

7.2.9 Indication of accept or connect functionality.............cooooiiiii 42

7.3 Functional desCriplion ... e 42
7.4 Companion standard descCriptions ..o e 43

-4 - 61162-420/FDIS O IEC(E)

Annex A (normative) Defined KEYWOIdS.o.uiiuniiiiii e 44
Annex B (normative) Basic IEC 61162-4 data typescoovviiiiiiiiiiiiii e 46
Annex C (normative) General application companion standardscoooii i, 47
C.1 Introduction and general prinCiplesoeiniiiiiii e e 47
C.2 FUunctionality OVEIVIEWcceiiiiiiic e b e 47
C.2.1 General data definitionsoooiiiiiiii e 47

C.2.2 VErSION COUBS ...uniitiiiieii ettt et et e e e et h e e e e e eaneeen 47

C.2.3 Manufacturer and model identificationcoooiii i 47

C.2.4 Interface and MCP informationccoiiiiiiiiii e 47

C.2.5 AUthenticationoooiii e e e 47

O3 ST w1 1= T 0 1= VN O S 48

C.2.7 Datatypes GENEralc.cvuiiiiii i e o e 48

C.2.8 Application PACSimpleApplication...........coooiiiiiie i, 52

C.2.9 Application PACFUlIAPPlication........cooiiiii i e, 52

C.2.10 Interface PCCVersionCodesSoiuuiiiniii e it 53

C.2.11 Interface PCCApplicationInfo..........cooui it 54

C.2.12 Data types USErAUth i e 55

C.2.13 Interface PCCUSErAULN ... e 56

Annex D (normative) LNA-MAU companion standardc...coociiiiiiiiiii e, 59
D.1 General PrinCiples ... e et 59

D.2 Companion Standardscoooiiiii e 60
D.2.1 Data types LNaMauUcooiiniii i 60

D.2.2 Interface PCCLNASTatS .. ittt e 62

Annex E (normative) General alarm and monitoring companion standards............................. 64
E.1 Introduction and general prinCipleso 64

E.2 Alarm and monitoring system identifiersc..cooiiiiiiiiii i 64

E.3 Functionality OVerVIeW ... i it e 64
E.3.1 Companion standard for tag based monitoring and alarm system................ 64

E.3.2 Client-server architeCture ..o 65

e G T 1= Yo T 1 10 1 o= 65

G 1= Yo =T = £ T 65

E.3.5 Taginformationccoiiiiiii e 65

E.3.6 Tag attributeso 65

E.3.7 Tag data ..o e 65

B .3 8 AlAIIMIS i s 66

E.4 ApPliCation ClasSSES .. ouiuiiiiiiiie e 66

E.5 Companion standard StruCtUrecoooiiiiiiiii e 67

E.B File SIrUCTUIE. ... e e 67

E.7 © Standard a0 NAmMESc.u i 68
A T =Y o= = | PPN 68

E.7.2 < Structure of P tag name ClasS.........ccooviiiiiiiiii e 69

E.7.3 General structural rulesccoouiiiiiiii e 69

E7.4 Main ProCESS COUES ..uiuiiiiiiiiiiiiie et e e e e e e aene e 70

E.7.5 ProCess SUD-COAES. ...t 70

E.7.6 General SUD-groUPS.c.iiiieie e e 70

E.7.7 Automation related sub-group.......ccciiiiiii 71

E.7.8 Navigation SUD-grOUPS. ..o 71

E.7.9 Datatype indication groupcc.ooiiiiiiii e 71

E.7.10 Use of engineering UNitS.........oiiiiiiiiiii e 72

61162-420/FDIS O IEC(E) -5-

E.7.11 SequenCe NUMDET e 72

E.8 Structure of standard tags (S Class) ..o e 73
E.9 Structure of yard tags (Y Class) ... 73
E.10 Structure of internal tags (I Class) ... e, 73
E.11 New tag name ClasSes 73
E.12 General quality indiCatorso.uiiiiiii e 73
E.13 Certificationo e 73
e I 0 U= 7= o o U S 73
E. 15 Validity flag . ..o 74
E.16 Authenticationo T e e e eanas 74
E.17 Companion standard specifications ... 74
E.17.1 DATA TYPES TagData.......ccoviiiiiiiiiiec ettt et e e 74
E.17.2 Application PACReadableServer...........cooiii i 80
E.17.3 Application PACWritableServer ...t 80
E.17.4 Application PACAIarmSystem i 81
E.17.5 Interface PCCTagDatabase..........ccooooiiiii i i 82
E.17.6 Interface PCCTagText. ..o e 84
E.17.7 Interface PCCTagStreamot 85
E.17.8 Interface PCCTagNetsearch..........ciii i 86
E.17.9 Interface PCCTagAttributes..... ... i 87
E.17.10 Interface PCCTagSubSCribe .. (i e 88
E.17.11 Interface PCCTagWIitet 89
E.17.12 Interface PCCTagAIarmM ... oo 90
E.17.13 Interface PCCTagSet oo 91
E.17.14 Interface PCCTagAttributeWrite ..o 92
Annex F (normative) Navigational interfaces ... 94
F.1 TIEC 61162-1 relay fuNCHION ..cee e 94
F.2 Interface PO CNME AIN. .. et e e e e 94
F.2.1 READ NOOTP OIS, .. ittt e e eae s 94

F.2.2 FUNCTION GetPortDesCriptionccoiiiiiiiiiiei e 94

F.2.3 FUNCTION NOOFSENtENCESuivviiiiiiiiiei e 94

F.2.4 FUNCTION GetListOfSentences........ccoovviiiiiiiiiiiiie e 94

F.2.5 FUNCTION GetSentencecoccuiiiiiiiiiiii e 94

F.2.6 SUBSCRIBE POr_SNN>.. e 95

F.2.7 SUBSCRIBE Port_<nn>_<fmt>. ... 95

F.3 Interface PCCONMEAOUL ... oot 95
F.3.1 READ NOOTPOIMS. ...uiiitiiiiie e eanas 95

F.3.2 FUNCTION GetPortDesCriptionccoiiiiiiiiiii e 95

F:3.3 NONACKED-WRITE POt _SNN> .. 95

F.4 / The IEC 61162-1/2 related companion standard documentsc..cceevveveeneennnn. 96
F.4.1 The IEC 61162-1/2 data type descriptionccoooviiiiiiiiiiii e, 96

F.4.2 Description of Interface PCCNMEAIN.........ccccoiiiiiiiiii e 97

F.4.3 Description of Interface PCCNMEAOUL...........ccoooiiiiiiii e, 100

F.4.4 Application DesCriptionc.ieiii 101

1)

2)

3)

4)

5)

6)

-6 - 61162-420/FDIS O IEC(E)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MARITIME NAVIGATION AND RADIOCOMMUNICATION
EQUIPMENT AND SYSTEMS -
DIGITAL INTERFACES -

Part 420: Multiple talkers and multiple listeners —
Ship systems interconnection — Companion standard requirements
and basic companion standards

FOREWORD

The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees): The object of the IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, the IEC publishes International Standards. Their preparation is
entrusted to technical committees; any IEC National Committee interested in the subject dealt with may
participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization
for Standardization (ISO) in accordance with conditions determined by agreement between the two
organizations.

The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has representation
from all interested National Committees.

The documents produced have the form of recommendations for international use and are published in the form
of standards, technical specifications, technical reports or guides and they are accepted by the National
Committees in that sense.

In order to promote international unification, IEC National Committees undertake to apply IEC International
Standards transparently to the maximum extent possible in their national and regional standards. Any
divergence between the IEC Standard and the corresponding national or regional standard shall be clearly
indicated in the latter.

The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with one of its standards.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject
of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61162-420 has been prepared by IEC technical committee 80:
Maritime navigation and radiocommunication equipment and systems.

The text of this standard is based on the following documents:

FDIS Report on voting
80/XX/FDIS 80/XX/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This publication‘has been drafted in accordance with the ISO/IEC Directives, Part 3.

The special typographical conventions and nomenclature used in this standard are defined in
IEC 61162-400 annex A.

Annexes A, B, C, D, E and F form an integral part of this standard.

61162-420/FDIS O IEC(E) -7-

The committee has decided that the contents of this publication will remain unchanged until
June, 2005. At this date, the publication will be

* reconfirmed;

+ withdrawn;

* replaced by a revised edition, or
+ amended.

-8- 61162-420/FDIS O IEC(E)

INTRODUCTION

International Standard IEC 61162 is a four part standard which specifies four digital interfaces
for applications in marine navigation, radiocommunication and system integration.

The four parts are:

IEC 61162-1 Single talker and multiple listeners
IEC 61162-2 Single talker and multiple listeners, high speed transmission
IEC 61162-3 Multiple talkers and multiple listeners — Serial data instrument network

IEC 61162-4 Multiple talkers and multiple listeners — Ship systems interconnection. Part 4
of this standard is sub-divided into a number of individual standards with part
numbers in the 400 series.

IEC 61162-420 contains the specification of a description language for IEC 61162-4 series
companion standards (user layer specifications), a framework for the organization of such
companion standard descriptions and also the descriptions. of basic components that can be
used as a starting point to build IEC 61162-4 series components and networks.

Later standards in the companion standard series (IEC 61162-42x) are expected to address
more concrete interface requirements for specific navigational equipment.

Relationship with the other parts of the IEC 61162 series of standards is defined in annex B to
IEC 61162-400.

61162-420/FDIS O IEC(E) -9-

MARITIME NAVIGATION AND RADIOCOMMUNICATION
EQUIPMENT AND SYSTEMS -
DIGITAL INTERFACES -

Part 420: Multiple talkers and multiple listeners —
Ship systems interconnection — Companion standard requirements
and basic companion standards

1 Scope and object

International Standard IEC 61162-420 specifies the requirement for and basic components of
the IEC 61162-4 series companion standards. These components are referred to as follows:

a) PCS (PISCES companion standards) which contain the rules for creation of companion
standards. The general principles underlying the PCS are described in clause 4.

b) PCSDL (PCS description language). Part of the PCS is the definition of the syntax for the
various types of companion standard documents that make them readable by computer
tools. The PCSDL is described in clause 5.

c) function block description. The function block description is a high level and graphical
description of applications using the IEC 61162-4 series interface standard. The function
block syntax is specified in clause 7.

d) PFS (PISCES foundation specifications) which contain a framework for classification of
applications adhering to the IEC 61162-4 standard. The PFS will also provide a minimum
level of interoperability between different manufacturers’ applications using this framework.
The PFS is described in clause 6.

Clause 5 contains the complete reference to the PCS description language. Subclause 5.2
explains the basic concept of the PCS which is given by the distinction between four types of
specifications: applications, interfaces, information and data types. General conventions with
respect to the syntax of the PCS can be found in 5.3. All PCS documents are based on a
similar structure. This approach is intended to make it easier to become familiar with the
syntax and semantics of the PCS which is defined in 5.3.1. The four subclauses thereafter
explain in detail the syntax and semantics of the four different types of specifications generated
by the PCS.

Clause 6 describes the relationship between the different classes of IEC 61162-4 applications
and gives an overview of their functionality. The annexes contain the detailed PCS definitions
for the classes.

The objective of companion standards is to provide definitions of the information that is
transferred within an integrated ship control system and of how these information items can be
accessed or provided. Furthermore, the standard shall allow the definition of the actual network
interfaces which the applications use to connect to the system. The description format is
machine-readable, allowing an automatic compilation of the description into interface software.

A companion standard allows the reader to, at will, shift the focus between a technical
specification and a definition of interfaces and information items. The development team can
determine information attributes like unit, power, accuracy and the structure of the system
architecture and create a common interpretation basis for data before the system
implementation. The formalisms underlying the specification language will at the same time
provide an unambiguous and precise description of the equipment interfaces which allow the
use of computer tools to automatically generate interface program codes or to inspect and
manipulate interfaces on-line, for example for debugging and monitoring purposes.

-10 - 61162-420/FDIS O IEC(E)
2 Normative references

The following normative documents contain provisions, which, through reference in this text,
constitute provisions of this part of IEC 61162. For dated references, subsequent amendments
to, or revisions of, any of these publications do not apply. However, parties to-agreements
based on this part of IEC 61162 are encouraged to investigate the possibility of applying the
most recent editions of the normative documents indicated below. For undated references, the
latest edition of the normative document referred to applies. Members of IEC and ISO maintain
registers of currently valid International Standards.

IEC 61162-1:2000, Maritime navigation and radiocommunication equipment and systems —
Digital interfaces — Part 1: Single talker and multiple listeners

IEC 61162-2:1998, Maritime navigation and radiocommunication-equipment and systems —
Digital interfaces — Part 2: Single talker and multiple listeners, high speed transmissiion

IEC 61162-3, Maritime navigation and radiocommunication equipment and systems — Digital
interfaces — Part 3: Multiple talkers and multiple listeners — Serial data instrument network 1

IEC 61162-400, Maritime navigation and radiocommunication equipment and systems — Digital
interfaces — Part 400: Multiple talkers and multiple listeners = Ship systems interconnection —
Introduction and general principles

IEC 61162-401, Maritime navigation and radiocommunication equipment and systems — Digital
interfaces — Part 401: Multiple talkers and multiple listeners — Ship systems interconnection —
Application profile

ISO/IEC 8859-1:1998, Information technology — 8-bit single-byte coded graphic character sets
— Part 1: Latin alphabet No. 1

3 Definitions
For the purpose of this part of IEC 61162, the following definitions apply.
3.1 Terms and abbreviations

3.1.1

abstract specification

PCS specifications that are part of the PFS (defined in this standard) are not intended for direct
implementation and are termed “abstract”

3.1.2

application interface

a collection of interface components instantiated in an application definition document as one
protocol level interface

1 To be published.

61162-420/FDIS O IEC(E) -11-

3.1.3

CP - connection point

an application interface consists of a number of individual “functions” that can be called into or
out from

3.14

CS - companion standard

a protocol layer on top of the normal OSI application level (see definition of companion
standard in IEC 61162-400), representing the definition of how the application layer
functionality is used to implement a certain application’s interface functionality. Also called user
layer

315

function block

a high level, partly graphical representation of an application’s place in an integrated system
which presents all interfaces and relationships between these on an overview level

3.1.6

interface (component)

a collection of connection points (CP) in one INTERFACE definition document. It can be
aggregated with others into an actual interface as defined in the A-profile. The actual interface
(A-profile sense) is defined as the application interface in the APPLICATION document

3.1.7

NMEA

the National Marine Electronics Association (NMEA) maintains a protocol standard called
NMEA 0183 that is almost identical to IEC 61162-1 and IEC 61162-2. For historical reasons,
symbolic names in some of the PCS documents in this standard refers to NMEA instead of to
IEC 61162-1 (annex F). Although references to NMEA are made, the PCS documents define an
application that is intended for use together with the IEC 61162-1 and IEC 61162-2 standards.
It can also be useful for transmittal of NMEA 0183 messages, but this is outside the scope of
this standard.

3.1.8

PCS - PISCES companion standard

the complete concept, including description language (PCSDL), function blocks and the
foundation classes (PFS)

3.1.9
PCSDL - PISCES companion standard description language
the formal interface description language for PCS

3.1.10
PFS — PISCES foundation specifications
the interface base classes for all applications created in the framework of the PCS

3.1.11
tangible
a specification of an entity that shall be implemented (instantiated) at some time

-12 - 61162-420/FDIS O IEC(E)

3.2 General typographical rules in this standard
The following typographical rules apply throughout this standard:

a) fragments and complete pieces of PCSDL source code is written in Couri er;
b) tokens written in capitals, typeset in COURI ER are reserved PCSDL keywords;

c) words in angle brackets (elbows), '<' and '>', define place-holders that have to be filled
with the appropriate token as described in the text;

d) tokens in square brackets, ' [' and ']', define tokens that are optional, for example parts
of a statement that are only required under special circumstances;

e) ellipses, ..., show that the preceding item can be repeated.

Subclause 5.3 defines other typographical and lexical conventions that apply to PCSDL
documents.

4 General principles for the PCS

4.1 General structure
411 Purpose

The main purpose of the PCS is to give an unambiguous way to interpret data transmitted via
the IEC 61162-401 A-profile protocol. In this sense, the companion standard adds meaning to
the data transmitted via the protocol, converts it to information and makes it usable for
application modules connected to the network. To serve this purpose, the PCS shall provide
the following:

a) establish a language to define information types, application interfaces and applications.
This language has to be human readable as well as interpretable by a computer. this
language is the PCSDL;

b) provide a standardized set of information types and interfaces which can be used as a
basis to create customized (i.e. vendor specific) application and interface descriptions. This
set of specifications is the PFS, see 4.4;

c) provide a general framework for a high level description of applications that use the
IEC 61162-4 standard for communication. This is the function block specification format.

4.1.2 Components of the PCSDL

The PCSDL supports the generation of four different types of specifications as outlined in the
following subclauses.

The three first document types can be used to generate protocol (A-profile) related entities, for
example data object names, MAU names and format strings. The information specification can
be used to add more application related meaning to the information entities. The information
specifications can also use an extended format string syntax to implement higher level
functionality based on the A-profile specification.

4.1.21 Application

Representation of application units within the PCS. An application is defined by application
interfaces specifying the respective inputs and/or outputs. The application specification can be
looked at as the specification of how one particular piece of equipment is connected to the
system. Applications will normally consist of a number of interfaces configured as either
providing data to or using data from the system.

61162-420/FDIS O IEC(E) - 13 -

4.1.2.2 Interface (component)

Specification of connection mechanisms used between applications. Each interface has one or
more connection points (CP). Each connection point specifies one or more information_ type
received or provided by the respective interface. The connection point specification.consists of
the data structures transferred, the information the data structures carry and -how the
information can be accessed (read, write, etc.).

4.1.2.3 Data type

Data type definition specifies the structure and to some degree the content of data transmitted
via the IEC 61162-4 network. This document can be optionally exchanged or complemented
with information specifications.

4.1.2.4 Information

An information specification represents and defines the content and interpretation of data
transmitted via the IEC 61162-4 network. The purpose of these specifications is to define the
format of exchanged data and specify the usage of the respective information. This type of
document extends and replaces the function of the data type definition by making it possible to
give more meaning to the data structures. Any information specification can be converted to a
data type definition, but at a loss of information meaning.

NOTE The information type specification is not currently used .in the PFS. At this time, only the data type
specification is used to define structure and contents of transmitted data blocks. However, it is recommended that
the information type is considered for new specifications.

4.1.3 Object based principles in the PCSDL
4.1.3.1 General

The PCSDL supports a simplified object based view on companion standard specifications. To
create companion standards, the following object-based principles can be applied.

All specifications used within PCS are seen as encapsulated structures defining their own
scope and domain. Each specification can be used as a “building block” to create new
specifications following the rules given in clause 5. Two different mechanisms are available to
compose new specifications from existing ones: specialization and aggregation.

4.1.3.2 Specialization

The PCSDL gives the opportunity to derive new specifications from existing ones. The new
specification (i.e. application, interface or information) inherits all properties from the old
specification called the base specification). This mechanism forms a generalized-specialization
relation between these two specifications.

4.1.3.3 Aggregation

It is possible to compose new specifications by aggregating two or more existing specifications.
A complex information type can, for example be formed by including several information
specifications into a new specification. The same applies for composing complex application
interfaces from one or more interfaces (see 5.6).

Specifications for applications, interfaces and information are included in three separate
hierarchies, see figure 1. Each hierarchy stems from a base specification covering properties
common to each specification of the respective type (i.e. information, application or interface).
An overview of the PFS hierarchy for applications is given in annex E.

- 14 - 61162-420/FDIS O IEC(E)

4.1.3.4 Data types versus information

The current version of the PFS does not make use of interface specifications and neither the
object-oriented principles inherent in that. Instead, the less advanced data type definitions are
used. This is due to legacy companion standards from previous versions of this document (see
MiTS in part 400).

NOTE This part of the standard emphasizes the information type documents as it is believed that this will be the
description method of choice in the future. However, the reader may want to concentrate on data type documents
which are the most commonly used.

41.4 Generic and manufacturer specific companion standards

The general approach recommended by PCS is to divide the set of companion standards into
two different parts (figure 1): Generic CS and manufacturer specific. CS. Generic CS will be
defined by the PFS. The PFS contains generic specifications for data types, information,
interfaces and applications. These specifications can be used by manufacturers as a starting
point to define own specifications to describe their respective equipment. This means that PFS
specifications can be used as templates to create equipment specific specifications. This
mechanism forms a generalized-specialization relation between the newly created specification
and the respective specification of the PFS. It has to be noted that specifications which are part
of the PFS are abstract in the sense that they cannot be used directly to specify equipment. A
tangible PCS specification of a component has always to be derived from a PFS specification.

Information Interface Application
| PICInformation | | PCClnterface | [PACApplication |
Ge?;;ig)cs [PICInfo1 | [PICInfo2 | [PCCInt1 | [PCCInt2 | [PACApp1 | [PACApp2 |
Manufacturer
specific CS
[Cinfo3 | | Cinfo4 | | CInt3 | [Cint4 | | CApp3 | | CApp4 |

Figure 1 — General structure of PCS hierarchy of specifications

To form specifications of information, interfaces or applications, direct inheritance mechanisms
can be used. The new specification inherits all properties from the specification from which it is
derived (the base specification). When deriving new specifications from existing ones,
attributes only may be added (see also 4.2.5). Thus, the following mechanisms are the only
ones permitted by the PCS description language:

a) generation of a new application specification: derivation of the new specification from an
existing one (abstract or tangible specification) and addition of new application interfaces
(see 5.5);

b) generation of ‘@ new interface specification: derivation from an existing interface
specification (abstract or tangible specification) and addition of connection points (see 5.6);

c) generation of a new information specification: derivation from an existing specification and
addition of attributes, i.e. data types or information (see 5.7);

d) creationof new data type specifications (see 5.8).

61162-420/FDIS O IEC(E) - 15—

4.1.5 Generic companion standards (PFS)

IEC 61162-420 defines generic information or data types to be transmitted via 'the A-profile
protocol and standardized interface or application descriptions. With respect to physical
components, these generic descriptions define the minimum required functionality (including
the information they shall provide) of the component concerned. Generic companion standards,
including application, interface, data type or information specifications, are part of this standard
and shall not be modified by manufacturers.

Thus, applications, interfaces and information specifications contained ‘in the generic com-
panion standard form abstract specifications and normally it makes little or no sense to use
these directly as full specifications for actual applications. Normally, it'is necessary to create a
more concrete specification (a tangible specification), by deriving it from one of the abstract
specifications.

NOTE Generic companion standards provide the least common denominator for information interchange via the
IEC 61162-4 protocol. For instance, a physical position sensor will at least own the interfaces defined for a generic
position sensor. In this sense, these generic application and interface descriptions have to be in line with the
respective IMO performance standards.

The collection of generic specifications defined by the PCS is the PFS.

4.1.6 Manufacturer specific companion standards

To satisfy the needs of specific (i.e. physical) components, a manufacturer creates specific
companion standards for information type, data types, interfaces or applications. These com-
panion standards are derived from generic companion standards (see 4.2.7). In general, a
manufacturer specific companion standard for, for example an interface will contain the content
(information types, attributes, etc.) of the respective generic companion standard as a sub-set.

NOTE The main advantage of this approach is that there is no need for a manufacturer to develop specific
components from scratch. This accelerates the process of specification production and implementation significantly.
The second advantage is that any interface derived from a generic PCS interface description provides as a
minimum the information types defined within the respective specification of the PFS: even if a manufacturer
specific companion standard is unknown, the services of the respective template can be used. For example if
manufacturer B wants to connect his ECDIS system with a GPS receiver of vendor A, the manufacturer can at least
receive the information types of the generic GPS interface (i.e. position, satellites in view, valid flag and time), even
if he does not know the specification of the customized interface. Only the generic interface used as the template
has to be known in this case.

Companion standards for information types, interfaces and applications are defined within
hierarchies (figure 1). Information types and interfaces will be derived from the respective base
specification defining the properties (attributes) common to all specifications derived from this
base. There is also a base specification for applications.

The limit between the generic (normative) and the customized (manufacturer specific) part of
the PCS is formed by a horizontal cut within the respective specification hierarchy. This is
indicated by the dashed line in figure 1.

Attributes and methods necessary to implement services that are needed from the A-profile will
also be defined within the highest-level base specifications. They are implemented by several
specialized generic interfaces. These interfaces are described within 4.4,

To provide a high level description of a new application, the manufacturer should also provide a
function block specification of the application (clause 7).

- 16 - 61162-420/FDIS O IEC(E)

4.1.7 Guidelines for using PCS

This subclause gives an overview of how to use the PCSDL to create specific. companion
standards. The starting point is the need to connect a new application to an IEC 61162-4
compliant network. To implement such a connection, the following steps have to be carried out:

a) identify the necessary interaction between the application concerned and other applications
in the system. Add possible interactions to possible future applications where appropriate.
Group these interactions roughly into draft PCS application interfaces. If possible, the draft
should be based on an already existing similar application which is known to conform to the
PFS;

b) construct a function block that can be used to describe the new application. The function
block should identify input interfaces, output interfaces, physical relationships between
application and environment and the application’s functionality;

c) if an appropriate application specification does not already exist, derive a new application
specification from a PFS template (i.e. an application base specification contained in the
PFS) and adapt it by adding new application interfaces;

d) determine the number and type of each connection point in each of the application
interfaces. Add new connection points to existing interfaces where appropriate. Sub-divide
each application interface into separate interfaces where appropriate (see below) and
create the new interface specification documents, either based on existing interface
specifications, from scratch or by inheritance from-interfaces in the PFS;

e) determine input/output formats for each new connection point in the interfaces. Describe
this in information and/or data type documents, where possible from existing PCS
specifications.

f) create the final application specification document by using specialization from the
appropriate component in the PFS library and adding the newly developed or modified
interfaces.

Note that application interfaces are defined only in application specifications. Each
application interface consists of one or more interface components, grouped together to form
one interface module as seen from the application. Each of the interface components is
defined by one interface specification. This approach ensures high flexibility for adapting
application interfaces to specific needs of applications by creating a building block system for
interfaces.

Application base Interface base
specification specification
PFS
Derive Application specific
A 4
New application Derive
Add
oat Add i
Appllcatlon > Interface
interface
Add
A 4
Connection
point
/dd Nd
Data type Information

Figure 2 — Generating applications

61162-420/FDIS O IEC(E) - 17 -

Figure 2 shows the way to create an application specification derived from a template (base
specification, i.e. the PFS).

As stated above, a new application specification must be created by deriving it from an existing
PFS compliant specification. The newly created application will inherit all application interfaces
from the respective base specification. The only adaptive mechanism allowed is application
interfaces. A new application interface is created by grouping one or more existing or newly
created interface specifications. As with application specifications, specifications of new
interfaces have to be derived from existing specifications (i.e. abstract interface specifications
of the PFS or other existing interface specifications). Newly created interfaces will inherit all
connection points from the respective base specification.

Newly created interfaces can be adapted to specific needs by addition of connection points.
Connection points already defined for that interface (i.e. those specified in base specifications
of the interface in view) may not be changed. As shown in figure 2, connection points form
collections of data types or information specifications. They may contain zero or an arbitrary
number of attributes (data types or information specifications). It is also allowed to have empty
connection points. Data types and information specifications shall not be mixed in one
connection point.

4.2 Products of the PCS

The PCS is basically a formalized way to describe the system interfaces of applications that
use this standard. This means that the PCS must specify certain protocol entities that are used
in the establishment of connections between applications and in the exchange of information.
These entities are described in the following subclauses.

There are also other entities produced from-the PCSDL documents. These are either used in
special protocol entities (priorities, load .limitations) or in various PFS defined interfaces
(authentication and application management). These entities are defined in the last two subclauses.

Note that there is a difference in whether applications are clients or servers of a particular data
object. These differences are based on the fact that the server will generally be less
configurable than the client.

4.21 MAU name

The server MAU name is one of the connection attributes of the data objects used for
communication. The application document defines the MAU name. Note that the document may
specify that the MAU name shall be configurable, in which case the MAU name is defined
during system integration by the help of some configuration tool.

4.2.2 Interface name

The interface name is common to a group of data objects that are connected to en block during
connection establishment. The interface name is one of the data object attributes. The
interface name is determined in the application document. The interface name can in some
cases be configurable. In this case, the ability to configure the name will be made explicit in the
application document.

4.2.3 Interface class name

If an interface name is changed during configuration, the old interface name as specified in the
application document shall be saved in the application and made available to configuration
tools as the interface class name.

The interface class name is not used during connection establishment and can in principle be
disregarded by applications not conform to the PFS.

- 18 - 61162-420/FDIS O IEC(E)

4.2.4 Data object name

The data object name is another data object attribute that is used during connection
establishment. The data object name is defined by the interface document. It is not possible to
configure this name.

4.2.5 Data object function

The data object may represent one of several function types, for example read, write or
subscribe. The functional capabilities of a data object is determined in the interface document.
One data object can have only one function, but several data objects with the same name in
the same interface can be distinguished between by their function (or-data structures). This is
similar to name overloading in object-oriented languages.

4.2.6 Data object structure

In addition to function, each data object is also recognized by the input and/or output data
structures. The data structures are defined in the interface document itself, in a data type
document or in an information document. On the protocol level, it is only the structure of the
data element that is important for establishing contact. However, the protocol has provisions
for embedding information contents requirements in the data structure (see 4.2.7).

4.2.7 Data object information contents

For meaningful exchange of information, the participating applications need to know more
about the sent and received data than just their structure. This aspect is partly covered in the
data type document, where meaningful interpretations of data structures usually are defined
together with the definition of the structure itself. It is also possible to give meaning to the data
structures in the interface documents in conjunction with defining the functional scope of an
interface. A third method is to require additional documentation from a provider of a server
MAU. This requirement can be specified.in the application document.

However, the preferred way to ‘give meaning to data structures is through the information
document type. This document can either be an addition to the data type document or replace
the data type document altogether.

4.2.8 Run-time library information items

Some parts of the companion standard documents generate attribute values for the run-time
system that implements a MAU. These items are:

a) load related attribute values, i.e. number of clients for an accept type interface or
transaction queue length for all types;

b) priority for various connection points or interfaces;

c) password for interfaces;

d) watchdog timer for the MAU.

These parameters are set in the application definition header and in conjunction with the
definition of accept and connect interfaces in the same document.

Some of the attribute values are most commonly specified as configurable, for example
password.

61162-420/FDIS O IEC(E) - 19 -

4.2.9 PFS information items

Parts of the companion standard documents do also generate various information items that
are used by the PFS. These items are used by software libraries and parts of the PFS to
generate various configuration tables. These items are:

a) version codes for PFS base class;

b) authentication parameters in application and interface component documents for use in
user authentication interface classes;

c¢) manufacturer and model information for application management classes;
d) original classes of interface classes that are renamed in application documents.

4.3 The PISCES foundation specifications (PFS)
The PFS contains the generic part of the PCS. The PFS consists of the following parts:

a) application foundation specifications;
b) definition of generic interfaces (see 4.4);
c) data type specifications.

Application foundation specifications form aggregations of standard interfaces according to the
functionality to be covered by the respective generic application.

4.4 Generic interfaces in the PFS

The purpose of generic interfaces specified in the PCS is to give the developer access to the
services provided by the A-profile. Annexes in this part of IEC 61162 contain companion
standards for the following interfaces:

a) retrieval of general information about applications and interfaces such as version codes,
manufacturer and type of equipment;

b) interfaces to change/assign control to a specific console combined with authentication of
user and workstation, for example to change control, acknowledge alarms or change
system parameters;

c) specialized interfaces of a system MAU associated with each LNA for system management
on the application level, for example retrieve network statistics or report attributes of local
MAUSs;

d) general mechanisms for retrieving and manipulating data based on tagged information
entities. These mechanisms include search, read, write, subscribe and alarm manipulation.
The mechanisms/can be used for general data access as well as for implementation of
alarm systems. This includes an interface to transmit or receive stream based data;

e) general interface for transmission of IEC 61162-1 telegrams over a system network.

5 The companion standard reference specification

5.1 Introduction

This clause contains the complete reference for the PISCES companion standard description
language (PCSDL). It contains all information necessary to understand the companion
standards contained in the PFS and to write own companion standards based on the PFS.

- 20— 61162-420/FDIS O IEC(E)

Subclause 5.2 explains the basic concepts of the PCS. Subclause 5.3 defines the general
conventions with respect to the syntax and semantic of the PCS description language. It
explains the use of tokens (identifiers, keywords and literal constants) and the use of white-
space elements (delimiters, indentations, comments, etc.). Subclause 5.3.3 concludes with the
explanation of naming rules with a particular focus on the scope rules for the identifiers.

As explained in 4.2, the PCS can be used to specify four types of entities: applications,
interfaces, information and data types. These four different document types have a common
structure, formed by a header specifying general properties for all definitions in the document
and a body containing the individual definitions. The body of the definition document normally
consists of several blocks, each identified by a keyword. This general structure will be
elaborated on in 5.4.

Subclauses 5.5 to 5.8 contain the specification of the description language for each
documentation type mentioned above. Each of these sections have the following layout:

a) a short overview explaining the purpose and the properties of the document in question;

b) a description of the general layout of the respective document. This description includes
the general properties than can be set within the header of the document and an overview
of the blocks allowed in the body of the document;

c) a detailed reference to the syntax of the respective blocks:

5.2 Basic concepts of the PCS

The PCS supports a simplified object-based principle for specifying protocol entities. To create
new companion standards, the mechanisms of aggregation and specialization can be used.
Specialization means that new companion standards can be derived from existing
specifications. The new specification inherits all properties from the base specification from
which it is derived (see figure 3).

Information base Interface base Application base
specification specification specification
N Information 1 Interface 1 Application
specification specification specification
1 1 0 1
N N N
Data type Connection point Application
yp P interface
0 1
N JU N
N) N
—se Information Data type Interface

Figure 3 — Relationships between specifications of the PCS

The following types of specialization are possible for PCS:

— /derived applications will inherit all application interfaces from the respective base
specification;

— derived interfaces will inherit all connection points from the respective base specification;

— derived information specifications will inherit all attributes from their base specification.
Attributes may be of the type data or information.

61162-420/FDIS O IEC(E) -21-

Newly created specifications can be adapted to specific needs by adding properties to them.
This mechanism is called aggregation. The following aggregation mechanisms are ‘allowed for
companion standards:

— application specifications can be adapted by adding application interfaces to .them. Each
application interface consists of a set of interfaces. For every interface used, a corre-
sponding interface specification must exist. Application interfaces already defined in base
specifications may not be changed;

- interfaces can be extended by addition of connection points. Connection points use one or
more information or data types. For each information or data type used a corresponding
specification must exist. Connection points already defined in base specifications cannot be
changed. Data types and information specifications shall not be mixed in one connection
point;

- information specifications can be adapted by adding new attributes to them (data type or
information type).

The mechanisms of specialization and aggregation form relationships between the different
specification types as elucidated in figure 3.

5.3 Conventions for companion standard specification files

This subclause covers general typographic conventions that apply to the PCS description files.
It covers the use of tokens (see 5.3.2) and general naming rules including specification of the
scope of named objects (see 5.3.3).

5.3.1 General principles

The files shall contain only characters from the 8-bit ISO 8859-1 character set, except where
literal characters or strings are used. For literal character types, it is legal to use 16-bit
characters where supported by tools and a computer system.

NOTE The actual representation of long characters must be checked in the programmer’s references.

Only printable characters, the newline control code and whitespace are allowed.

No more than 80 printable characters (including whitespace) are allowed on one line. A
continuation symbol can be used to continue a long line before a newline control code. The
continuation symbol is the backslash, ‘.

5.3.2 Tokens

The basic element of the PCS description language is the token. A token in the PCS can be of
one of the following types:

a) Identifier: token to refer to a named entity in a specification. An identifier is defined by its
name and scope;
b) Keywords: reserved words of the PCS description language (see annex A);

c) Literal constants: tokens to express a constant value. Literal constants can be of several
data types (e.g. integer, floating point, character or string);

d) delimiters;
e) ‘white space.

The following paragraphs give the typographic conventions that apply to these tokens.

5.3.2.1 Identifiers

Identifiers can be any sequence of letters or numbers. The first character has to be a letter.
Capitals and lower case letters will be distinguished between. All characters of an identifier are
significant.

-22 - 61162-420/FDIS O IEC(E)

5.3.2.2 Keywords

Keywords are always in capitals. A list of the PCS keywords is given in annex A. To enhance
readability, keywords should be avoided when used out of context, for example in comments.

NOTE Because the PCS description language distinguishes between capitals and lower case, it is generally legal
to use keywords in lower case or in mixed-case variants, for example for identifiers. However, to avoid confusion for
the reader, it is not recommended to do so.

5.3.2.3 Literal constants

Literal constants are representing explicit values. Depending on the data type expressed by a
literal constant, the following types can be distinguished:

a) Integer constant: representation of integers by a sequence of digits, for example 4123. The
number can be signed or unsigned, in hexadecimal, octal or decimal;

b) character constant: representation of one character (see ISO/IEC 8859-1), for example
's' . Long characters are also legal as literal where supported by computers and tools;

c) floating constant: a floating constant consists of an integer part, a decimal sign, a fractional
part, an optional e or E as exponential sigh and an unsigned or signed integer exponent.
The integer as well as the fractional part consists of a sequence of decimal digits. For
instance 3. 1415926 or 123. 1e- 5 are valid floating constants;

d) string constant: a string is a sequence of characters from the ISO/IEC 8859-1 character
set, for example "this is a string". Long characters are legal where supported by
computer and tools;.

e) aggregate constant. this type is used to represent more complex data structures.
Aggregates can be records or arrays of the type { <t oken1>, <token2>, ..., <tokenN>}.

A formal definition of the allowed formats of these literal constants can be found in the annexes
of IEC 61162-400.

5.3.2.4 Delimiters
Three types of delimiters are used:

a) whitespace (see nextparagragh) is used to separate other tokens in the documentation;

b) newline is to be understood as the line separator character(s) used on a given platform, for
example a single line-feed (on a UNIX system) or a carriage-return followed by a line-feed
(on PCs);

c) block separators (see 5.4) are separated by two or more newline delimiters, i.e. with one or
more empty lines between them.

Whitespace is understood as one or more tokens that act as separators between tokens, but
which have no syntactic meaning. Any contiguous number of the tokens listed below is defined
to be “one” whitespace.

5.3.2.5 Indentation

For indentation the space character, ‘ ‘, shall be used. Indentations should be used to structure
the text (e.g. mark one block).

61162-420/FDIS O IEC(E) - 23 -

5.3.2.6 Comments

Comments can be placed anywhere in the text to structure the document. The general operator
that starts a comment to the end of a line is the semicolon ‘;’. Comments can be at the
beginning of a line to mark the entire line as a comment or within a line — in the latter case, the
rest of the line is a comment.

NOTE A newline following a whitespace is a newline token even if the whitespace is part of a-full line comment.

If a comment is extended over more than one line, it has to be marked with an asterisk, **, as
the first character. A multiple line comment has to be terminated by a block delimiter (two or
more newlines).

ettt il Comment over an entire line.
DATA BLOCK Ti me

* A representation of Multiple line comment with
relative time indentation, delimited by newlines.

word32_m sec ; seconds

) Declaration followed by comment
word32_m usec ;mcro-seconds y

Figure 4 — Example comments

NOTE Although the comments described here are not evaluated by a computer reading the description files, they
have a significant impact on the human readability of PCS documents and are highly recommended.

5.3.3 Name structure

Identifiers for data types (interpretation, data blocks or constants), application, interface or
information specifications may contain a mix of upper and lower case letters, digits and the
special character underscore, ‘_’. They should normally start with an upper case letter.

NOTE The A-profile uses these identifiers as attribute values during connection establishment, but does not
enforce any rules on their construction other than that they do not contain the null character.

Other identifiers, for example ‘attribute names, may contain the same mix of printable
characters. For uniformity in specifications, they should start with a lower case letter.

5.3.4 Name scope

The scope of an identifier depends on its type. Identifiers declared within application, interface
or information specifications are local to the respective specification. Dependent on
specification type, this affects the identifiers as follows:

— applications: identifiers for interfaces specified within application specifications are local
(5.5);

— interfaces: identifiers for connection points defined within an interface or identifiers for
connection points defined in another interface referenced and reused by this interface are
local to this interface (5.6);

- information specifications: identifiers for attributes to the information type are local (5.7);

- data types: these are scope dependent on being declared as local or global (see below).

Data type specifications contain two different sections, one for local and one for global
variables. These sections are marked by the keywords LOCAL and GLOBAL:

- data types (i.e. interpretations, constants and data blocks) within the LOCAL section are
local to the respective specification. As for the specification types mentioned above, they
are accessible from other specifications only via the scope operator, ‘. ’;

- 24 - 61162-420/FDIS O IEC(E)

- data types within the GLOBAL section have global scope. This means that they are
accessible from all specifications referencing the respective data type specification directly.
In this case, the use of the scope operator is optional.

NOTE The purpose of the GLOBAL keyword is to allow the definition of data types that can be used without the
scope operator in later documents. This simplifies the text of specifications.

The LOCAL section has to precede the GLOBAL part of data type specifications. If no keyword is
used, the section is assumed to be global.

To make reference to a scope identifier, the name of the scope to which'it belongs has to be
prefixed and followed by a full stop, ‘.’, delimiter. (e.g., myl nf or mat i on. m_myMenber).

5.3.5 Configurable identifiers and literal

Some identifiers, for example MAU and interface names may be specified as configurable
during system installation. This is typically necessary if several identical units (MAUs) are
installed in one system. In this case, each MAU must be given a unique name.

To specify in companion standard documents that an identifier or literal is configurable, it can
be enclosed in angle brackets, ‘<’ and ‘>’. The documentation should specify where and how
the entity is configured.

5.4 General structure of PCS specifications
5.4.1 General
PCS documents are used to specify the following entities:

a) application specifications;
b) interface (specifications);
c) information specifications;
d) data types.

An outline of the general document is shown in figure 5.

The specification consists of two main parts:
a) the specification header defines attributes of a general nature and is similar for all
document types;

b) the body of the specification consists of a sequence of blocks defining properties specific
to the respective entity type. The structure of this part is dependent on the document type.

61162-420/FDIS O IEC(E) - 25—

The header is delimited from the body by a block delimiter.

<type> <paranmeter_|ist> The first line of the specification indicates type.
[* description] A comment to describe the entity specified.

Each specification starts with a header setting

general attributes such as version, date,

<header keyword> <literal >
o responsibility.

;specification body
<keywor d> <parameter_list>

[* description] The body of a specification consists of a

sequence of blocks giving the detailed
:body of bl ock specification of the entity in view.

next bl ock

Figure 5 — PCS general structure

5.4.2 The specification header

All specifications start with a keyword defining the type of entity that shall be specified. <t ype>
may be one of the following:

a) APPLI CATI ON to specify an application;

b) | NTERFACE for an interface;

c) | NFORMATI ON to create an information specification;

d) DATA TYPES to generate a data type specification.

A list of parameters is appended to <type>. The format of this list depends on the type

specified. The first parameter of the list always specifies the identifier (i.e. the name) of the
entity. For details on the syntax of the specific types, see below.

The first line can be followed by a‘block comment giving a description of the content of the
specification.

VERSI ON <versi on_code> One attribute definition.
DATE <dat e> Another after a newline,
RESPONSI BLE <name> and another.

Figure 6 — Header

In the rest of the header, each line consists of a keyword naming an attribute to be specified
and a literal constant giving the attribute value. An example is shown in figure 6. The lines shall
be separated by one or more newlines and/or block comments. The parser will normally look
for the first keyword of the body of the specification to determine that the header has ended.

The following header fields are common and required for all PCS specification documents:

a) VERSION <version_code>: the VERSION keyword sets the version of a PCS entity to the
value given by <version_code>. The version code shall be written in the format N.N where
N may be any integer-constant. Leading zeros are allowed (e.g. 0.001);

b) DATE <date>: defines the date of creation of the entity to <dat e>. The date shall be in the
form YYYY-MM-DD with YYYY specifying the year of creation, MM the month and DD the
day (all fields are integer constants). For instance 2000- 08- 03 is a valid date;

c) RESPONSI BLE <nane>: this field specifies the responsible organization and author of the
specification. It may be any string constant. This field should normally name the
organization and person in the organization responsible for further maintenance of the
document.

- 26 — 61162-420/FDIS O IEC(E)

5.4.3 The specification body

The basic element of the specification body is the block structure. Each block starts with a
keyword indicating the type of block followed by a list of parameters. The available types of
blocks are dependent on the type of entity to be specified. Details on legal blocks and the
respective syntax will be given in the following sections. Blocks are separated from each other
by at least one block separator.

5.5 Application specifications
5.5.1 Overview

An application specification is the description of the interfaces of one application unit that shall
be connected to the IEC 61162-4 network. Each application specification consists of a set of
one or more interface specifications. A PCS application specification; with its referenced docu-
ments, contains all necessary information to create the programming code that implements the
interfaces of the application unit.

New application specifications can be derived from existing ones. The new specification
inherits all properties from the existing application specification, i.e.:

— attribute values defined in the header of the respective base specification;

- all interfaces specified by the base specification.

5.5.2 General layout

Figure 7 shows the general layout of the application specification. Examples of application
specifications can be found in the annexes.

The keyword APPLI CATI ON defines the start of an application specification. The syntax of the
statement is as follows:

APPLICATION <appl_name> DERIVED [FROM] <base_application>

The identifier <appl _nanme> defines the name of the application (the MAU name). The keyword
DERI VED shows that the application is derived from a base specification given by the identifier
<base_application>. This ‘identifier has to be a valid reference to another application
specification. The keyword FROM is used to make the statement more readable. A tangible
application specification shall be derived from a base specification. Only abstract specifications
(specifications which are part of PFS) need not to be derived from base specifications.

61162-420/FDIS O IEC(E) - 27 -

APPLI CATI ON <appl _name> DERI VED [FROM
<base_application>

<general header>

REFERENCES
<interface_name> [version]

USAGE
[* description]

| NTERFACES
[* description]

ACCEPT <interface_nane>
[* description]

<properties of the interface>
CONNECT <interface_name> ON <server_nane>
[* description]

<properties of the interface>

Figure 7 — General layout of an application specification

A block comment should follow the first line, giving a short overview of the application
specified. It is recommended also to supply a revision history where appropriate. This is not
part of the formal syntax and can be included after the description by another comment block.

5.5.3 Header

As for all entity types covered by the PCS, an application specification is divided into a header
and a body. In addition to the general properties listed in clause 5.4, the following entries can
be defined in the header of application specifications:

a)

b)

d)

VERSI ON <versi on_code>

DATE <dat e>

RESPONSI BLE <name>

[MANUFACTURER <nane>]

[MODEL <name>]

[WATCHDOG <i nterval nms>]

[AUTHENTI CATI ON' [<user >: <password>, < user>: <password>, . . .]]

Figure 8 — Application header

MANUFACTURER <nane>: this attribute specifies the manufacturer of the application
specified here. The name may be any character string;

MODEL <nane>: the model name of the application should be given here. This attribute is
used, for example to distinguish between different variants of a product family. The name
may be any character string;

WAT CHDOG <interval ns>: this field specifies an optional watchdog interval (in
milliseconds) that is used by the LNA to periodically interrogate the state of the MAU;

AUTHENTI CATI ON <user >: <passwor d>: this field specifies that authentication is used for
all interfaces in the MAU and may, optionally, specify the available user and password
codes. The latter is normally not included in open documents. Authentication uses a
dedicated PFS interface.

- 28 - 61162-420/FDIS O IEC(E)

5.5.4 Body

The specification body shall consist of three main blocks in the order shown in the following
subclauses. All blocks shall be present, although they may be empty or consist of just
comments as, for example the USAGE block.

5.5.4.1 References

Each external interface has to be referenced before it can be used in the | NTERFACE blocks.
This is done in a block that starts with the keyword REFERENCES. Each additional line of this
block contains a reference to an interface in the form:

<interface_nane> [version]

<interface_name> shall be the name of a valid interface. To distinguish between different
versions of one interface, the version code may be specified as a text string. This string, if
present, will be compared to the version code specified in the header of the referenced
interface. A mismatch shall cause a parser error.

5.5.4.2 Usage

This block gives a description on how the application should be used. The block starts with the
keyword USAGE, but the remainder of the block must be formatted as a block of comments.

5.5.4.3 Interfaces

The | NTERFACE block contains the specification of the application interfaces with which the
application is provided. Each application interface identifier is prefixed by the keyword ACCEPT
(for a server interface) or CONNECT (for a client interface). The keyword line may be followed by
a block comment giving a description of the purpose and functionality of the respective
application interface.

5.5.4.4 Accept type interface

The syntax used to specify a server interface is illustrated in figure 9.

ACCEPT <interface_nane>
[* description]

MAX MESSAGE RATE <nsg_per_sec>]

[

[AUTHENTI CATI ON [<user>:<password> . . .]]
[CLI ENTS <numb_cl i ent s>]

[TRANSACTI ON QUEUE <num_trans>]

[PASSVWWORD [<passwd>]]

| NTERFACE [COVPONENT] <name>

Figure 9 — Accept interface template

The specification of a server interface starts with the keyword ACCEPT. The newly created
interface will be named <i nterface_nanme>. The name may be specified as configurable by
enclosing it in ‘@angle brackets. The interface will be composed of a number of interface
components as specified at the end of the example.

A number of properties can be specified for the server interface by using a set of property
definition statements. These statements must be placed between the header line and the first
interface_ component definition. They may be listed in any order. Each statement shall be one
line, separated from other lines by one or more newlines. The following properties may be set
for a server interface:

61162-420/FDIS O IEC(E) - 29—

a) MAX MESSAGE RATE <msg_per_sec>: this entry is not converted to a protocol entity. It is
used to check and verify system and module load. It shall specify the maximum number of
transactions (including connection attempts) that the server application accepts on this
interface;

b) AUTHENTI CATI ON <user >: <passwor d>: if user authentication is required for the respective
interface, this property has to be defined. The user and password fields may optionally be
specified to list the available users. The password may be specified as configurable;

c) CLIENTS <nunmb_clients> the maximum number of clients that are allowed to be
connected to the server may be specified here. The token <nunmb_cl.ient s> is of integer
type. This property may be omitted if the maximum number of clients is not limited. The
limitation is enforced by the LNA by denying further connection attempt, after the number of
clients has been accepted by the MAU. The limitations do not apply to urgent connection
attempts;

d) TRANSACTION QUEUE <numb_trans>: the maximum number of pending transaction
requests that the server allows in the input queue may be specified here. The token
<nunb_t rans> is of integer type. This property will limit the number of transactions sent to
the server for a given interface. By delaying acknowledgements, the server can use this
limit to control its load. The limitation does not apply to urgent requests;

e) PASSWORD [<passwd>]: if the server shall be protected by a password it may be specified
here. Note that the password normally will be configurable and that the string specified as
<passwd> usually is empty or a string in angle brackets. The string will be the default
password for the interface.

The interface connection points are specified by a number of the following statements:

| NTERFACE [COVPONENT] <name>

Each application interface consists of one or more interface components, each specified as in
the line above. All components specifications must be in one block (only one newline between
each line). The keyword [COMPONENT] is normally used to make the code more readable.
<name> has to be the name of a valid interface specification as defined in the REFERENCES
section (see above). The complete interface (consisting of all components) will be instantiated
as one A-profile interface and given the name set in the ACCEPT statement.

5.5.4.5 Connect type interface

The specification of a client interface is initiated by the keyword CONNECT. The definition is
similar to the accept type interface definitions, except for the properties that can be set and the
definition of a server to connect to.

The identifier <ser ver _name>_has to be a valid name of an application acting as the server for
the respective application interface (the server MAU name). The <i nterface nanme> must
likewise be the name of one of the application interfaces on the server. Both these names may
be specified as configurable.

CONNECT <interface_name> ON <server_nane>
[* description]

[MAX MESSAGE RATE <msg_per_sec>]

[[PRI ORI TY [interface_conp[.conn_point]] <priority>]
[TRANSACTI ON QUEUE <num_trans>]

[PASSWORD <passwd>]

I NTERFACE [COMPONENT] <name>

Figure 10 — Connect application interface template

-30 - 61162-420/FDIS O IEC(E)

The following properties may be set for a client interface:

a) MAX MESSAGE RATE <nmsg. per sec.>: this entry has the same function as for the
ACCEPT statement. It shall specify the maximum number of transactions generated by this
client application for this interface. This is a measure that may be enforced by the
application, but it is normally only tested against and is used as a guideline for total system
load calculations;

b) PRIORITY [interface_conp[.conn_point]] <priority>:the PRI ORI TY flag can be used
to set the priority of an interface component or a specific connection point. If not specified,
the priority will be set to NORMAL. The connection point of the interface component affected
by this property is specified by the name argument. If the name argument is omitted, the
priority applies to all connection points in the application interface. If the .conn_poi nt
component is omitted, the priority applies to all connection' points in the interface
component specified. The constant-token <priority> shall have the values NORMAL or
URGENT;

c) TRANSACTI ON QUEUE: this is as for the accept interface;

d) PASSWORD: this is as for the accept interface, except that the password specified is that
used for connection to the server.

The remainder of the specifiction consists of one or more lines as follows:

| NTERFACE [COVPONENT] <name>

These lines are used to specify the components of the application interface in the same format
as for the accept interface.

Note that a connect interface may contain a sub-set of components that the server supports in
its interface. It cannot, however, have components that are not supported by the server. This
will result in a run time connection failure.

5.5.4.6 Handling of anonymous broadcast

If the application interface name is ABCVh.or ABCn where n is a digit from 1 to 5, the interface
components shall consist of only anonymous broadcast connection points. For accept
interfaces, this means that a MAU name is disregarded.

These connection points shall be exported as listening (connect) or sending (accept) on the
specified broadcast port.

5.6 Interface component specifications
5.6.1 Overview

Interfaces are used in application specifications to describe the functionality and connectivity of
the application. The application specification defines application interfaces which consists of a
number of interface components. Each of the interface components is defined in an interface
definition document.

The format of interface component descriptions is defined in this clause. Interface components
themselves form aggregations of connection points. Each connection point specifies input
and/or output information available from the interface.

NOTE - In essence, interfaces describe the view on an application from the outside world — from an object-oriented
point of view, interfaces specify the methods giving access to the internal structure and behaviour of an application
object. That means that all functionality and behaviour of an application visible from other applications is given by
the interfaces.

61162-420/FDIS O IEC(E) -31-

5.6.2 General layout

Figure 11 shows the general layout of the specification for an interface component. Examples
of interface specifications can be found in the annexes. The following subclauses describe the
document in more detail.

| NTERFACE <i nterface_name> DERI VED [FROM <base_specificati on>

<header >

REFERENCES
<i nfo_name> [version]
<data_type> [version]

i

USAGE
[*description]

<entity_name> [version]

1

ONNECT! ON POl NTS

<connection_type> <connecti on_nane>
[* description]

I NPUT
[* description]

<el enent decl arati on>
OUTPUT
[* description]

<el ement decl aration>

Figure 11 — General layout of an interface specification

5.6.3 Header specification

The keyword | NTERFACE defines the beginning of an interface component specification. The
syntax is as follows:

I NTERFACE <i nt er face_nane> DERI VED [FROM <base_speci ficati on>

The identifier <i nt er f ace_name> defines the name of the interface specification. This is later
used in application specification documents to identify the interface component. A block
comment should normally follow the first line, explaining properties and usage of the interface
component. The keyword DERI VED indicates that the interface is derived from a base
specification given by the identifier <base_specificati on>. This identifier has to be a valid
reference to another interface specification. The keyword FROM can be used to make the
semantics easier to understand.

It is mandatory to derive a tangible interface specification from a base specification. Only
abstract specifications (parts of the basic PFS) need not be derived from base specifications.

As for all entity types covered by the PCS, an interface specification is divided into a header
and a body. The properties to be set in the header are given in 5.4.

-32 - 61162-420/FDIS O IEC(E)

5.6.4 Body specification

The blocks defined in the following subclauses shall be part of the body of ‘an interface
specification.

5.6.4.1 References

Information or data type specifications used in the specification of connection points must be
referenced before use. Each line of the REFERENCE block contains a reference to an information
or data type specification in the form:

<name> [version]

<name> shall be the name of an information or data type specification. To distinguish between
different versions of specifications referenced here the version code may be given by the token
<versi on>. This is a string that, if specified, must match the version string in the referenced
document.

5.6.4.2 Usage

This block shall give a description on how the interface should be used. The actual content is a
comment and is not parsed.

5.6.4.3 Required documentation

This block lists additional documentation required for proper interpretation of the interface
specification. This is mainly to instruct the parser/compiler of the PCS specification that it
should give a warning to the system integrator to check the availability of the specified
documentation. It will not generate protocol entities. Following the keyword a list is given as
one text block; each line in the block should normally contain an entry of the form:

<entity_name> [version]

The token <entity_name> is a user defined symbol which one can assume identifies the
documentation in question. If version information is available for the documentation, it may be
specified by the token [versi on].

5.6.4.4 Connection points

This block contains the specification of the connection points that the interface component
provides. Each connectionpoint is specified by the following parameters:

a) <connection_type>: keyword specifying the type of the connection as in the first column
of table 1;

b) <connecti on_name>: identifier specifying the name of the connection point to be created;

c) | NPUT/ OUTPUT: dependent on <connecti on_type> (see table 1) the connection point
needs an | NPUT and/or an OQUTPUT specification. The formats of both input and output
blocks are the same.

The connection types and corresponding input and output requirements are listed in the table
below. Note that an input or output field may be empty although the existence of the field is
required.

61162-420/FDIS O IEC(E) - 33 -

Table 1 — Connection point types

Keyword In Out

FUNCTI ON Yes Yes
READ Yes

WRI TE Yes
NONACKED WRI TE Yes
SUBSCRI BE Yes
I NDI VI DUAL SUBSCRI BE Yes Yes
BROADCAST SUBSCRI BE Yes
ANONYMOUS BROADCAST Yes

The <el ement decl ar ati on> can take one of the following forms:

a) <information> <nanme>: the specification of a single information entity (previously
declared in the reference section). This is then the output or input entity;

b) <data type> <name> [. . .]: the specification of a data type with the syntax as for a
data block (5.8.4.4.3). The single type, the array or the data block will then be the input or
output entity;

NOTE 1 |If a new data block is defined (over multiple lines) in this manner it may be given a name by the

parser for reference by application source code. The name will normally be the name of the connection point
with the postfix | n or Qut . This is, however, determined by the parser.

NOTE 2 The use of a single data item or array will not cause a new data block to be defined. In this case,
only the actual data item or array is transmitted.

c) opaque <information> [count type:nmax size]: the specification of a variable
length data block (as for variable length arrays in 5.8.4.4.3), where the interpretation is
defined in an information document previously referenced.

The <nanme> field may be used by the parser to name application source code entities. It has
no meaning for any A-profile entities.

5.7 Information specifications
5.71 Overview

Information specifications define information transmitted via an IEC 61162-4 network. Mainly,
two properties of information entities will be defined:

a) interpretation: the object based concept (i.e. assignment of information entities to a specific
type) and the transmission of additional information by complex data structures allows the
programmer to transmit data with an implicit meaning, see 4.1;

b) structure: for high-level applications (e.g. decision support systems) it is not sufficient to
process only data. Additional information has to be available, for example source of
information, accuracy and time stamp. This leads to complex structures. The specification
of the internal structure of such complex data entities can be given in information
specifications.

5.7.2 General layout

Figure 12 :shows the general layout of an information specification. Examples can be found in
the annexes.

- 34 - 61162-420/FDIS O IEC(E)

I NFORMATI ON <i nformati on_name> [DERI VED [FROM <base_specificati on>]

<header >

REFERENCES
<type_name> [version]

1

USAGE
<descri ption>

ATTRI BUTES
[* description]
<attribute_list>

Figure 12 — General layout of an information specification

5.7.3 Header

The keyword | NFORMATI ON defines the beginning of an information specification. The syntax is
as follows:

I NFORMATI ON <i nf ormati on_nanme> [DERI VED [FROM <base_specificati on>]

The identifier <i nf or mati on_name> defines the/ name of the information specification. This
name can be used by interface component specifications to specify an input or output to a
connection point. The optional keywords DERI VED FROM indicates that the information
specification is derived from a base specification given by the identifier
<base_speci ficati on>. This identifier has to be a valid reference to another information
specification. The keyword FROM is used to make the text easier to read. A block comment
should follow the first line, explaining properties and usage of the information entity.

As for all entity types covered by the PCS,; an information specification is divided into a header
and a body. The properties to be defined in the header are defined in 5.4.

5.7.4 Body

The body consists of the blocks defined in the following subclauses in the order they are
described.

5.7.4.1 References

The types used within the ATTRI BUTE block described below have to be referenced before
usage. Data types (5.8) and other information specifications can be referenced here. Each
reference has to be in the form:

<type_nane> [version]

<type_nane> has to be a valid name of an information specification, data block or
interpretation. To distinguish between different versions of one type, the relevant version
number may be specified by substituting [ver si on] with the relevant version string.

5.7.4.2 Usage

This block gives a description on how the information specification should be used. The field
<descri pti on>is a comment block and is not used by any parser.

61162-420/FDIS O IEC(E) - 35—

5.7.4.3 Attributes

This block specifies the attributes of the information entity. Each attribute is declared on a
separate line, making up the block <attri bute_l i st>. Each line uses the following syntax:

<type_nane> <attri bute_nanme>

Where <t ype_name> may be one of the following:

a) a valid name of another information entity referred to in the REFERENCE block (see above);

b) a valid name of an interpretation or data block specified in .a referenced data type
document (5.8);.

c) one of the basic data types (see annex B).

An <attribute_nanme> is specified so that the parser can generate an application code for the
information element.

5.8 Data types
5.8.1 Overview
Data type specifications have three purposes:

a) define new data types: a data block defines a new data type. This type is normally also
associated with an implicit interpretation;

b) define interpretations: an interpretation describes how to understand the contents of data
of a given type. The interpretation declaration gives an old type a new name and defines a
new interpretation for this new type;

c) define named constants: the constant declarations define constants with symbolic names
that can be used by the same or other PCS documents.

The body of a data type specification is divided into two sections. The section identified by the
keyword LOCAL contains all data types having local scope. Data types with global scope are
included in the section marked with the keyword GLOBAL, see 5.3.3. Unless a data type,
interpretation, or constant is declared GLOBAL, the respective entity can only be accessed from
other specifications by using a scope operator. This is done by using a concatenation of the
data type specification name and the data type name with a dot (* . ') as separator.

5.8.2 General layout

Figure 13 shows the general layout of the specification of data types. Examples can be found
in the annexes.

- 36 - 61162-420/FDIS O IEC(E)

DATA TYPES <nmodul e>

<header >

REFERENCES
<modul e> [version]

i

* specify data types with |ocal scope

CONSTANT <type_nane> [OF <ol d_type>] |IS <constant-token>
[* description]

[* description]

<interpretation>

DATA BLOCK <type name>
[* description]

<data_list>
[* description]
<data_type> <itenr [;description]

<data_type> <itenr [;description]
<data_type> <itenr [;description]

* specification of data types with gl obal scope, syntax is as
in the LOCAL section of the specification

Figure 13 — General layout of a data type specification

5.8.3 Header

The keyword DATA TYPES defines the beginning of the data type specification. The complete
syntax is as follows:

DATA TYPES <nodul e>

The identifier <modul e> gives the name of the data type specification. A comment should follow
the first line, explaining properties and usage of the data types specified. Other header fields
are described in 5.4.

5.8.4 Body

The body of a data type specification consists of the following blocks in the listed order.

5.8.4.1 References

External data type specifications necessary to define the entities of the current specification
shall be referenced here. This block consists of a list with each line containing a valid name of
a PCS data type specification. To distinguish between different versions, the version concerned
here may be given by the token <ver si on>.

61162-420/FDIS O IEC(E) - 37 -

5.8.4.2 Local data definitions

The keyword LOCAL introduces the specification of data types with local scope. These data
types are accessible from other specifications only via the scope operator *.’, see 5.3.4. The
section marked as LOCAL has to precede a GLOBAL section, if the LOCAL section is used.

5.8.4.3 Global data definitions

The keyword GLOBAL precedes the specification of data types with global scope. These data
types are accessible from other specifications directly without the use of the scope operator (‘.
—see 5.3.4). The LOCAL section must precede the GLOBAL section if a LOCAL section is used.

5.8.4.4 Data definition types

Each local or global block consists of a number of data type definitions. These definitions can
be in any order. The following subclauses specify the format of each type of definition.

5.8.4.4.1 Constant

The format of a constant definition is:

CONSTANT <type_nane> [OF <ol d_type>] |S <constant-token>

The new constant named <t ype_nane>, optionally specified to be of type <ol d_t ype>, is given
a constant value <const ant -t oken>. <const ant -token> can be any literal representable by
the optionally specified type, see 5.3.1. The type has to be a built-in type or a type that has
been defined earlier or from a referenced document.

5.8.4.4.2 Interpretation
The format of an interpretation is:
| NTERPRETATI ON <t ype_nanme> OF <ol d_t ype>
<interpretation>
This block defines a new data type named <t ype_name> based on some built-in or previously
defined data type named <ol d_type>. The defined interpretations follow after a block

separator. Each line in the interpretation block defines a meaning for one discrete value that
the type is able to represent. The different variants are shown in the table below.

Table 2 — Interpretation forms

Form Description
literal = token Define a new token to have a constant value (literal)
token2 = token1 Define a new token1 to be identical to an old token2.
token Define a new token with no particular value
constant Describe the interpretation of a specific value

All forms can be supplied with an in-line description after a semicolon. The two variants using
an equals sign assign a new value to the left-hand side token. The new token can be used in
other contexts in the definition documents. The constant tokens can be of one of the types
described in 5.3.2 or a symbol created in a constant definition.

The two last lines in the table are used to give an informal description of how a particular value
or a previously defined token or constant should be interpreted. Neither of these will define new
symbols.

- 38 - 61162-420/FDIS O IEC(E)

5.8.4.4.3 Data block

The data block is used to define a new data type consisting of a set of data, elements (a
record). The structure of the data block definition is:

DATA BLOCK <t ype- name>
<dat a-type> <el ement - name> [; description]

<dat a-type> <el ement - name> [; description]

The new record is given the name <t ype-name>. After the keyword. line, a comment should
follow with an informal description of the new type.

Each data element in the new record is listed in order after the description. Each line defines
one new element of type <dat a-t ype> with name <el enment - name>. The different elements and
the declaration forms are shown in the table below. ol d-t ype references a previously defined
data type or a built-in type as listed in annex B.

Table 3 — Data type declaration formats

Form Description
old_type A single element of given type
[N] old_type An ordinary array of given type
[wtype:N] old_type Variable length array of given type

The N can be any integer. It specifies the (maximum) number of elements in the array. The
third form defines a variable length array. wt ype may be one of the unsigned integer types
listed in annex B.

The built-in types are listed in annex B. - These types should be referenced with the name given
in the left hand column.

5.8.4.4.4 Union

Unions are data objects that can be transmitted as one of several data elements of different
types and sizes. The specification of a union contains the possible elements that can be
transmitted in the place of this object The syntax of a union specification is shown below:

UNI ON <t ype- nane> : <wtype>
<data_type> <itenk [; description]

<data_type> <itenr [descri ption]

The union is given the name <t ype- name>. The wtype is an unsigned integral basic type that is
used to transmit the enumeration value of the union element actually transmitted. The
enumeration starts at one for the first line and increases continuously. The value zero is
reserved for an empty union, i.e. no data transmitted.

Only one of the elements defined on the following lines will be transmitted. Each element must
be abasic type or a derived type (data block or interpretation).

6 PISCES foundation specification (PFS)

6.1 Introduction

This clause gives an overview of the components of the PFS and defines the structure and
naming conventions.

61162-420/FDIS O IEC(E) -39 -

6.2 Naming conventions

To simplify the reading and understanding of PFS class trees, the following naming convention
has been defined:

a) all PFS class names start with three upper case letters;

b) PAC is used for application classes;

c) PCC is used for interface component classes;

d) PIC is used for information classes.

In addition, the PFS will contain one standard data type file called “Gener al ”. Other data type
files are created as found necessary.

6.3 Application classes
6.3.1 Introduction

The PFS application classes are organized in a tree as shown in figure 14. Each box
represents one application base class. The shaded boxes represent applications that are not
included in the companion standard source code, but which are included as examples of
possible derivations. The name of the application class is in bold font in the first line of text.
The component interfaces are listed underneath.

PACApplication
PCCVersionCodes
PACLNA PACFullApplication
PCCLNAStats PCCApplicationinfo

A

PACServerApp PACConsole PACNMEA PACNMEARelay PACControl
PCCTagRead PCCUserAuth(C) PCCNmealn PCCNmea PCCControl

Figure 14 — Application class tree

New tangible applications can be derived from any class in the tree, also those that are not leaf
nodes.

The tree defines a set of generally useful application classes as described in the following
clauses.

- 40 - 61162-420/FDIS O IEC(E)

6.3.2 Application base class: PACApplication

All PFS compliant applications must as a minimum have version and manufacturer codes
available (PCCVer si onCodes) . These components of the PFS are described in annex C (in
the PCSDL format).

Two “simple” example applications are shown as: a simple relay function for IEC 61162-1 and
IEC 61162-2 telegrams (PACNMEARel ay) and a simple control function (PACControl). The
latter is assumed to be some kind of simple control interface.

It is recommended that only very simple applications are derived from this base class. Most
applications should be derived from the managed application base class.

6.3.3 LNA MAU application: PACLNA

There is an application class associated with the system’s LNA (PACLNA). This application is
implemented as a MAU that can look into some of the LNA’s management structures. This can
be used for application management, configuration and debugging. The minimal functionality of
this MAU is defined in annex D.

6.3.4 Managed applications: PACFullApplication

There is also a more complex class of applications that as default support the inspection and
possible configuration of the interfaces and connection points implemented by the application
(PACFul | Appli cation). The source code for the interfaces is included in Annex C.

This application class enables, together with the LNA MAU, the on-line creation of a
connectivity tree with detailed information about each connection point. This is an important
tool for system integration and system management and debugging.

6.3.5 IEC 61162-1 and IEC 61162-2 interface application: PACNMEARelay

One example of a full application is the NMEA relay base class. This base class allows the
relay of IEC 61162-1 and IEC ‘61162-2 telegrams over the IEC 61162-4 protocol. This
represents a simple way to integrate parts 1, 2 and 4 of this standard. The source code is
included in annex F.

6.3.6 Console application: PACConsole

The console application base class provides a starting point for the creation of consoles that
shall cater to user centred HMI. In this standard, the base class is only provided with an
authentication client interface (PCCUser Aut h). This is typically used to verify console position
and user authenticity before any operation with side effects is allowed to be performed. The
source code is included in.annex C.

6.3.7 General alarm and monitoring application: PACServerApp

A simple base class with a simple data base function for general data retrieval is implemented
in this application base class. A more detailed application tree is described in annex E. This
base class, or at least parts of its component interfaces should be included in any application
that may present data to a higher level application.

These application classes are also useful as general gateways between any other sub-system
or bus and the IEC 61162-4 protocol.

61162-420/FDIS O IEC(E) —-41 -

7 Specification requirements for PCS compliant applications

7.1 Introduction and general documentation format
To enable the user to get a reasonable overview of an application’s functionality and the

relationship to and between interfaces, a set of documentation requirements has been
developed.

The application documentation shall consist of three main parts as described in the following
subclauses.

7.2 Function block
7.21 Function block graphical view
The documentation shall contain a graphical function block view. This view shall be structured

as indicated in figure 15. Other graphical formats can be used, but the information entities
listed in the following shall as a minimum be included.

Parameters Status
Events) > Commands
— > —>
Function block
Input —» —> Output
variables —— —> variables

1

Physical effects
Figure 15 — Function block prototype

In the function block view, the application is drawn as a rectangle with certain inputs and
outputs. The inputs and outputs should be labelled with the corresponding connection point,
interface component or application interface dependent on wanted resolution. Only the inputs
and outputs that are most important for application function need to be included. The figure
shows those inputs and outputs that are normally included. These are discussed in the
following subclauses.

7.2.2 Physical effects

Physical effects are.interactions not representable in the IEC 61162-4 network. They shall be
drawn as double pointed arrows underneath the function block.

Physical effects are effects of interaction between the physical entities outside the control
system and the function block, transformed by, for example sensors, actuators or HMI.

7.2.3 Input variables

Input variables shall be drawn as arrows pointing into the function block in the lower left corner.

These are information elements generated by other function blocks. They are read during the
execution of the function block’s algorithm and are necessary for the correct operation of the
function block.

- 42 - 61162-420/FDIS O IEC(E)

7.2.4 Output variables

Output variables shall be drawn as arrows pointing out of the function block in the lower right
corner.

These are readable information elements generated as a result of execution of the function
block. These are typically input to other function blocks.

7.2.5 Events

Events shall be drawn as arrows pointing into the function block in the upper left corner.

Events are commands or notifications that are delivered to the function block from other
function blocks and which cause the function block to perform some operation.

7.2.6 Commands

Commands shall be drawn as arrows pointing out of the function block in the upper right
corner.

Commands are generated by the function block as commands or notifications (including alarms
and warnings) to other function blocks to trigger some remote operation.

7.2.7 Status

Status shall be drawn as arrows pointing up from the function block in the upper right corner.

Status represents information items that can be made available to other function blocks that
are not yet known, typically interfaces to various forms of higher level decision support
systems.

7.2.8 Parameters

Parameters shall be drawn as arrows pointing down into the function block in the upper left
corner.

Parameters represent data that can be set in the function blocks to control the function block’s
operation. The operation of the function block shall not depend on the continuous availability of
these data which can be filter constants, set-points or alarm limits.

7.2.9 Indication of accept or connect functionality

It may be convenient to indicate in the figure what is defined as connect (client) and what is
defined as accept (server) type interfaces. Note that this is independent of an entry point acting
as input or output. The following conventions shall be observed:

a) a client entry point shall be labelled with an upper case ‘C’ near the rectangle;

b) a server entry point shall be labelled with an upper case ‘A’ near the rectangle;

c) no labelis legal and does not carry any particular meaning.

7.3 = Functional description

The documentation shall contain a section that describes the functionality of the application.
This section shall relate the various inputs and outputs to the overall functionality.

61162-420/FDIS O IEC(E) - 43 -

The level of detail and the actual mechanisms employed to describe the functionality is left to
the author. As a general rule, the description should allow a reader to understand what the
application does and how the various inputs and outputs can be used to deploy the application
in an integrated system.

7.4 Companion standard descriptions

The third part of the documentation is a detailed description of all inputs and outputs in the
form of PCSDL documents. Base classes that are used in derivations and which are taken from
official versions of this standard need not be included in the listings.

Interfaces that are only used for internal purposes and which are not meant for public use may
also be deleted from the listing providing that these interfaces have no safety-related impacts
on the application or in the system in which the application shall operate.

—44 — 61162-420/FDIS O IEC(E)

Annex A
(normative)

Defined keywords

The following table shows the keywords reserved in the companion standard definition
documents.

Keyword Description
ACCEPT Define an accept-type interface
ANONYMOUS BROADCAST Define an ABC connection point
APPLICATION Define a new application specification
ATTRIBUTES Declare attributes of an information specification
AUTHENTICATION Specify need for user authentication
BROADCAST SUBSCRIBE A data object function type
CLIENTS Specify maximum number of clients for an interface
COMPONENT Syntactic sugar
CONNECT Define a connect-type interface
CONNECTION POINTS Define a set of connection points
CONSTANT Definea constant data item
DATA BLOCK Define a new data aggregate type
DATA TYPES Define new data types
DATE Followed by date of last modification
DERIVED Specify the base specification of a PCS specification
FROM Syntactic sugar
FUNCTION A data object function type
GLOBAL Define global scope for an identifier
INFORMATION Define a new information specification
INDIVIDUAL SUBSCRIBE Define an individual subscribe connection point
INPUT Define the data object's input record
INTERFACE Define a new interface specification
INTERFACES Define application interfaces
INTERPRETATION Define an interpretation of a data item
IS Syntactic sugar
LOCAL Define local scope for the following data types
MANUFACTURER Specify manufacturer of an application
MAX MESSAGE RATE Specify maximum message rate of an interface
MODEL Specify model of an application
NAMED Syntactic sugar
NONACKED WRITE A data object function type
OF Syntactic sugar
ON Syntactic sugar
OUTPUT Define the data object's output record
PASSWORD Specify password protection for a server interface
PRIORITY Specify the priority of a CONNECT interface
READ A data object function type

61162-420/FDIS O IEC(E) — 45 —

Keyword Description
REFERENCES Heads “included files” section
REQUIRED DOCUMENTATION Additional required documentation for an interface
RESPONSIBLE Responsible author of a specification
SUBSCRIBE A data object function type
TRANSACTION QUEUE Specification of load limitation for server
UNION Specify a union data type
USAGE Heads a description of the usage of a specification
VERSION Followed by version code of the specification
WRITE A data object function type

— 46 — 61162-420/FDIS O IEC(E)

Annex B
(normative)

Basic IEC 61162-4 data types

The following basic data types are supported by the IEC 61162-4 A-profile (IEC 61162-401).
The IEC 61162-4 protocol guarantees to transmit any aggregates of these types between
application units with no loss in precision or value.

Type Description
bool_m 1 bit Boolean
char8_m 8 bit character
char16_m 16 bit character
word8_m 8 bit unsigned integer
word16_m 16 bit unsigned integer
word32_m 32 bit unsigned integer
word64_m 64 bit unsigned integer
int8_m 8 bit 2's complement integer
int16_m 16 bit 2's complement integer
int32_m 32 bit 2's complement integer
int64_m 64 bit 2's complement integer
float32_m 32 bit floating point
float64_m 64 bit floating point

Refer to a more detailed description

and a formal definition of representation in IEC 61162-401.

61162-420/FDIS O IEC(E) - 47 -

Annex C
(normative)

General application companion standards

C.1 Introduction and general principles

This annex describes interface components and applications for basic system management
functions. Each application shall belong to one of the super-classes:

a) PACSI npl eApplication: shall provide mechanisms for accessing simple information
about the application (version codes, manufacturer and model information);

b) PACFul | Appli cati on: shall provide mechanisms for accessing information about the
interfaces and connection points provided by the application;

c) PACLNA: special application associated with LNA (see annex D).

Other applications are defined to be not conform to the standard.

This annex also contains an authentication interface that can be used by applications that
require operator or workstation authentication.

C.2 Functionality overview

C.21 General data definitions

The data type Gener al provides general data definitions for all applications conforming to this
standard.

Cc.2.2 Version codes

The interface PCCSi npl eAppl i cati on provides version codes in standard three number
format. Version codes for application program and protocol shall be provided.

Cc.2.3 Manufacturer and model identification

These are text strings that identify the manufacturer and the model. They should be the official
name of the respective entities.

C.24 Interface and MCP information

The PCCFul | Application interface provides additional information that allows a
management client to inspect all interfaces and MCPs.

C.2.5 Authentication

Authentication is application specific in that different servers have different requirements for
authentication. The standard provides a general interface to do authentication and this,
together with the session codes, can be used to make sure that the identity of a requesting
client is that which one expects.

— 48 — 61162-420/FDIS O IEC(E)

C.2.6 File overview

The following table lists the interfaces. Applications are contained in this annex.

Table 4 — Application related CS components

Component Description File
General General data types general.mcs
PACSimpleApplication Simple application skeleton appsimp.mcs
PACFullApplication Full application skeleton appfull.mcs
PCCVersionCodes Interface for version codes version.mcs
PCCApplicationInfo Interface for application information appinfo.mcs
UserAuth User authentication data types authd.mcs
PCCUserAuth User authentication auth.mcs
LnaMau LNA data types definition Inadata.mcs
LnaMaulf LNA MAU interface Inaif.mcs

C.2.7 Data types General

DATA TYPES Cenera
* This nodul e defines a set of general data-types. They are all defined as
gl obal

* Revision history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First IEC CDV rel ease

VERSI ON 1.2
DATE 2001- 01- 02
RESPONSI BLE | EC TC80/ WG6
REFERENCES
none
USAGE

* This file contains general definitions for PFS

GLOBAL

* Each bit . ndicates whether the corresponding field in a block is
valid. Valid neans interpretable, i.e. a null-termnated string
can be flagged as valid. A zero length variable length array can
also be valid. Fields are counted fromthe top of the data bl ock
definition (as index zero) and down (increasing index). The field
is valid if the corresponding bit is TRUE (1).

* Val ue i ndi cates whether data block is valid or not.

FALSE ; Block is illega
TRUE ; Block is ok

TA BLOCK Ti e

* Arepresentation of relative tine. Note that the representation
cannot accommodate |onger time differences than approximtely 136
years.

wor d32_m sec
word32 m pusec ; Micro-seconds fraction of above

61162-420/FDIS O IEC(E) - 49 -

I NTERPRETATI ON G obal Timre OF Tine
G obal Ti me contai ns nunmber of atom cl ock seconds and mi cro-seconds
since mdnight 1. January 1970 UTC, *excl udi ng* | eap
seconds. This is conpatible with POSI X tine representation (for
use in, e.g., ctine or localtime functions). This tine
measur enent has an offset to UTC tine that is changed for each
(negative or positive) |eap second.

* Note 2: The constant UTCOFFSET_JAN1999 can be used as an
approxi mation to the offset to UTCtime. One should keep in mnd
that there may be a second or so difference between the M TS tine
as specified by the systemserver and real UTC tine. This shoul d
be no problemas long as this is consistent during a voyage.

* Note 3: The GPS satellite or a radio or nodem based tine standard
server can be used to update the offset count.

* Note 4: Wen using PO X tinme conversion functions, one shoul d
check if the | eap second count is taken into consideration (it
shoul d not be) and if the second count is signed or not. A signed
second count wi |l cause problens around year 2038 when a signed
seconds count wap around to negative.

* Note 5: The second counter waps around sonetinme in the year
2107. Use of the tine structure should take care to do nodul o
arithnetic correctly.

sec ; Seconds since 1970-01-01 00: 00: 00 UTC
usec ; Mcro-seconds fraction of above

CO\ISTANT UTCOFFSET_JAN1999 | S 22
The last |eap second (at date of witing) occurred at the start of
January 1999. The total offset between PCSI X tine and UTC was after
that event 22 seconds. A conplete list of |eap seconds can be
found below. The list is adapted froma file |ocated at
ftp:// maia.usno. navy. nil/ser7/| eapsec. dat.

1972 JAN
1972 JUL
1973 JAN
1974 JAN
1975 JAN
1976 JAN
1977 JAN
1978 JAN
1979 JAN
1980 JAN
1981 JUL
1982 JUL
1983 JUL
1985 JUL
1988 JAN
1990 JAN
1991 JAN
1992 JUL
1993 JUL
1994 JUL
1996 JAN
1997 JUL
1999 JAN

EEE B R I . T S R T R I B S B

RPRRPRRPRRRPRRRPRPRREPRRPRREPRRRERRRER

DATA BLOCK Ver si on
* Version codes generally used in this protocol. An increment in najor

nunmber indicates a specification (protocol) change that may render
ol der versions inconpatible with newer. Downward conpatibility nmay
be supported but shall not be relied on. The value zero for mgjor
represent a test version with unknown relationship to official
versions. An increnment in mnor nunber represents some form of
correction or mnor adjustment that retains upwards specification
conpatibility. An increnent in release nunber indicates software
fixes with possible changes in functionality only to correct

- 50 - 61162-420/FDIS O IEC(E)

previous errors. The date represents the conpilation date and tine
for the software inplenenting the version.

wor d16_m nmaj or
wor d16_m nm nor
wor d16_m rel ease

A obal Tine date

I NTERPRETATI ON Engi neeringUnit OF wordl6_m
SpeC|f|cat|on of scal ar dinmension. Most units are based on SI; but
sone speci al considerations have been nade to naval units (knots,
nautical mles and angul ar neasures).

* Note: Different storage classes can use the sane engineering unit,
e.g., atime can be represented in a float or an integer. It is
usual | y necessary to know both storage class and engi neering unit
to interpret a number.

* EU_NAVDI RECTION is used both for positions (EFWor NS) or conpass
headi ngs. The context defines howit is used.

neasure, normally Nis zero).

data value pair: first is degrees N positive (S
neg), ; degrees E positive (Wneg) (position in
| atitude, |ongitude).

0 = EU _OTHER ; other (use description)

1 = EU_UNKNOWN : not known

2 = EU_COUNT nunber — di mensi on-1 ess

3 = EU_RATIO ; ratio — dinension-|ess

4 = EU TEXT No unit — text string

10 = EU_LENGTH m (| i near measure)

12 = EU_AREA ; m*2 (area)

13 = EU_VOLUME ; m*3 (vol ure)

14 = EU NAVDI STANCE ; nautical mles — 1852 m (navigational |ength)
20 = EU_ANGLE radi ans (angul ar measure)

21 = EU _NAVDI RECTION ; degrees, positive clockw se (angual ar

22 = EU_PCSI TI ON

30 = EU_VELOQ TY . m's (linear velocity)

31 = EU NAWELOCITY ; knots — nm h (navigational velocity)
32 = EU_ANGVELOCITY. ; radians/s (angular velocity)

40 = EU_ACCEL m s**2 (linear accel eration)

41 = EU_ANGACCEL i radi ans/s**2 (angul ar accel erati on)
50 = EU TIME L s (tine)

51 = EU_FREQUENCY ; Hz (frequency)

60 = EU_MASS ! kg (mass)

61 = EU DENSI TY ; kg/mt*3 (density)

62 = EU_MASSFLOW ; kg/s (nass flow

70 = EU_FORCE : N (Force)

71 = EU_TORQUE ; Nm (Tor que)

72 = EU _PRESSURE ; Pa or NNm (Pressure)

80 = EU_ENERGY :J (Energy)

81 = EU POAER 7 W (Power)

82 = EU HEATFLOW ; J/m*2 (Heatfl ow)

83 = EU TEMP ; Degrees C (tenperature)

84 = EU_ABSTEMP ; Degrees K (absol ute tenperature)
90 = EU_DYNVI SC N'm* s (Dynam c viscosity)

91 = EU _KINVI SC ; m*2/s (Kinematic viscosity)

100 = EU_RESI STANCE Ohm (Resi st ance)

101 = EU_CURRENT ; A (Current)

102 = EU _VOLTAGE 7V (Vol t age)

1000 = EU_RAW Raw byte stream (file)

61162-420/FDIS O IEC(E) -51-

1001 = EU_JAVA ; Java text code
1002 = EU TCLTK TCL/ TK code
1003 =

EU_EXPRESS . EXPRESS text code

10000 = EU_FREE User defined fromthis value and up

INTERPRETATI ON LocationCode OF word32_m
* Location codes. Unused codes are user defined. For future expansion
these codes should start at USERLOCATI ONS.
0 = LC_EVERYWHERE

’100000 = LC_USERLOCATI ONS ; Above and incl uding this nunber

| NTERPRETATI ON TPnet OF wor d16_m
* Code for various T-profile network (IEC 61162-420)-.

0 = TPN_ANYADR USER ; User specified

1 = TPN_MAUADR | PC ; MAU LNA system specific |IPC
2 = TPN I\/AUADR TCP ;. MAU-LNA over WAN TCP
129 = TPN_LNADR_I PVAR ; IPV4 Std. LNA-LNA redundant
130 = TPN_LNADR | PVARE ; |PV4 Ext ended LNA-LNA redundant
131 = TPN_WMADR | PVAR ; 1PV4 Std. MAU- MAU r edundant
132 = TPN MVADR | PVARE ; | PV4 Extended MAU-MAU r edundant
120 = TPN LNADR | PV4 ; 1 PV4 Std. LNA-LNA non-redundant
121 = TPN_LNADR_I PV4E ; | PV4A Ext ended LNA-LNA non-redundant
122 = TPN_MMADR | PV4 ;1 PV4 Std. MAU-MAU non-redundant
123 = TPN_VMADR | PVAE ; |PV4 Ext ended MAU- MAU non-r edundant

DATA BLOCK addr ess _m
* Address of a streaminterface. This consists of a T-profile type and a
T-profile dependent address block. The currently defined address bl ocks
are:
TPN_ANYADR USER: User defined, any |ength
TPN_MAUADR | PC: Syst em dependent code, e.g., process id
TPN_MAUADR_TCP: Voi d, zero/length
TPN_LNADR | PV4AR: _Void, zero |length
TPN_LNADR | PV4RE: 8 .octets, two word32_mInternet addresses
TPN_WMADR_| PV4AR: ~ Voi d, zero length
TPN_MMADR_| PV4RE: ‘8 octets, 2 word32_m
TPN_LNADR | PV4: Voi d, zero length
TPN_LNADR | PV4E: 4 octets: word32_m
TPN_MVADR | PV4: Voi d, zero length
TPN_MMADR_| PVAE: 4 octets: word32_m

TPnet tProfile ; T-profile in use
[wor d8_m 48] wor d8_m t Addr ess ; The address

I NTERPRETATI ON TPServi ce 1S word32_m
* A TP network service class. Values defined by T-profile.

0 = TPNS_UNKNOWN

I NTERPRETATI ON TPSI nst ance 1S word32_m
* A TP network service class instance. Values depedent on service. For
MAU- MAU stream over Internet, the value is TCP port nunber.

0 = TPNSC_NONE

-52 - 61162-420/FDIS O IEC(E)

C.2.8 Application PACSimpleApplication
APPLI CATI ON PACSI npl eApplication

* This application contains the general framework for the creation
of a minimum]|EC 61162-4 application.

* Revision history :
010102 1.2 First |
990831 1.1 First |

C FDI S rel ease
C CDV rel ease

mm

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W6

REFERENCES

| NTERFACE PCCVer si onCodes

ACCEPT Application

| NTERFACE COVPONENT PCCVer si onCodes

C.2.9 Application PACFullApplication
APPLI CATI ON PACFul | Appl i cati on DERI VED FROM PACSI npl eAppl i cati on

* This application contains the general framework for the creation
of a conplete | EC 61162-4 application.

* Revision history:
010102 1.2 First IEC FDI S rel ease
990831 1.1 First I EC CDV rel ease
VERS| ON 1.2

DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W36

REFERENCES

| NTERFACE PCCAppli cati onl nfo

* Mnimumfunctionality for full application.

ACCEPT Application

I'NTERFACE COVPONENT PCCAppl i cati onl nfo

61162-420/FDIS O IEC(E) - 583 -

C.2.10 Interface PCCVersionCodes
| NTERFACE PCCVer si onCodes
* This interface gives access to basic information about the
application.

* Revision history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First IEC CDV rel ease

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W6

REFERENCES
Cener a

USAGE
This interface is for general use by all applications
conpliant to the I EC 61162-4 conpanion standard. It is al so
contained in the application base class defined within the
PFS cl asses

*NOTE: Al variable length strings are | ength encoded and not nul
term nat ed

INTERPRETATICN PFCl ass OF word16_m
PFC application class code.

0 = PFC_NONE ; Special class

1 = PFC_LNA 7 LNA NMAU

2 = PFC_FULL ; Full server

3 = PFC_SI MPLE ;- Sinple interface

FUNCTICN Get Appl i cationl nfo

* This connection point returns general infornmation about
the application concerned. This includes header information (the
nane of the responsible author, manufacturer and type of
application) as well as information about the interfaces.

* Post condition: Returns nunber of interfaces supported in
addition to this one. I.e., zerois in principle a | ega
nunber. ‘The nunber specifies interface conponents. Interface
conponents are nunbered from zero (this one) to

i nterfaces.
I NPUT
none
OUTPUT
[word16 _m 64] char 8_m nanuf act ur er ; manuf act urer
[word16_m 64] char 8_m nodel ; model (type)
int32_m i nterfaces ;nunber of additional interfaces
PFC ass cl ass ; PFC type
Ver si on appVer si on ; Application revision

Ver si on pr ot oVer si on ; Protocol revision

- 54 - 61162-420/FDIS O IEC(E)

C.2.11 Interface PCCApplicationinfo
| NTERFACE PCCAppl i cationl nfo
* This interface gives access to infornmati on about
applications (general attributes), application interfaces
and their connection points

* Revision history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First IEC CDV rel ease

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W6

REFERENCES
Cener a

This interface is for general use by all applications
conpliant to the I EC 61162-4 conpanion standard. It is al so
contained in the application base class defined within the
PFS cl asses

*NOTE: Al variable length strings are |length encoded and not nul
term nat ed

* This command is used to retrieve detailed infornmation
about one selected interface conponent in the application
concer ned

* Precondition
I nput paraneter interface (see bel ow) nmust be a nunber of an
interface, nunbered fromzero (this interface itself) to
interfaces (from Get Applicationlnfo).

* Post condition
Information about the interface is retrieved. The data is valid
if the flag isCk is set to TRUE. Please note that the follow ng
fields are only valid for an accept interface (i. e. type == 1):
— auth_flag
— nunb_clients
— password
The field priority is only valid for a connect interface
(i.e. type == 0).

* Nunber of connection points are the total number of interfaces,
* |Interface nunmber is negative for illegal interfaces

-1: No such interface
-2: No data on interface

I"NPUT
int32_m interface

OUTPUT
int32_m interface ; Interface nunber, as input
[word16_m 32] char 8_m appNane ; Nane of interface

[word16_m 32] char8_m cl assNane ; Nane of interface class

bool _m isAccept ; FALSE: connect / TRUE: accept

bool _m hasAuth ; authentication necessary

bool _m needPassword ;interface password protected (TRUE/ FALSE)
wordl16_m acceptClients ;nmax. nunber of clients

wordl6_m nmax_ness_rate ; maxi num nessage rate possible
wordl6_mmin_nmess_rate ;mninum nessage rate all owed
wordl6_mopriority ; LOW MEDI UM or HI GH

int32_m noCPs ; Number of connection points

Version VvNo ; Version information

61162-420/FDIS O IEC(E) - 55 -

FUNCTI ON Get CPInfo
* This command is used to retrieve detailed information
about one sel ected connection point.

* Precondition :
I nput paraneter interface (see below) must be a valid code for an
existing interface conponent. conn_pt be a valid code for a
connection point belonging to the interface.

* Postcondition :
I nformation about the connection point conn_pt is retrieved.. The
data is valid if returned interface and conn_pt is
non-negative. Negative values for one or both are: ~-1: No such
entry for this interface/conn_pt -2: No data available on this
i nterface/ conn_pt

| NPUT
int32_minterface
i nt 32_m conn_pt

QUTPUT
int32_minterface
i nt 32_m conn_pt
[word16_m 1950] char8_m format ; Format string
[word16_m 32] char8_m nane ; Name of CP

C.2.12 Data types UserAuth
DATA TYPES User Aut h
* These data types are related to user authentication.

* Revision history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First IEC CDV rel ease

VERSI ON 1.2

DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W6

REFERENCES

DATA TYPES Gener al

INTERPRETATI ON UserGroup OF int32_m
Codes' for user groups.

0 = UG CAPTAIN

1 = UG _CH EF

2 = UG _DECKOFFI CER

3 = UG.OowW ; Oficer On Watch

4 = UG OTHERENG NEER ; not chi ef

1000 = UG _USER ; user defined from here

I NTERPRETATI ON Consol eGroup OF int32_m
Codes for operating consoles (from | MO A 830(19) and ot her)

CG_OTHER ; Not defined |location

CG_BRI DGE ; Navi gation bridge

CG_MACHI NERY ; Machinery control room

CG_FI RE ; Central fire control station

CG_LOCAL ; At location of equipnent being nonitored
CG_ENA NEER ; Engi neer's acconmpdati on

GO WNELO

- 56 - 61162-420/FDIS O IEC(E)

6 = CG BRI DGEW NGP ; Navigation position port

7 = CG_BRI DGEW NGS ; Navigation position starboard

8 = CG_BOACONTRCL ; Navigation and DP position

9 = CG_BOADOCR ;. For bow door

’1000 = CG USER ; User defined position fromthis code

I NTERPRETATI ON UaStatus of int32_m
Return status for request to authenticate.

US_ALLOWED

US_WRONGUSER

US_WRONGCONSOLE

US_WRONGSPECI FI CCONSOLE

US_WRONGSPECI FI CUSER

US_WRONGPASSWORD

US_UNKNOWN ;. Ot her unknown error

OB~ WNEO
I T I O T [T 1

1000 = US_OTHER ; OGther specific errors

INTERPRETATI ON UaCode of [32]bool_m
The user authentication code. |Increasing codes give increasing
| evel s of authorities. Coding is dependent on controlled
application. May be a bit-map?

0 = UANONE ; No secure operation/is allowed when all bits zero
1 = UA_READ ; Allowed to read data and attri butes

2=UAWITE ; Allowed to wite sone data

3 =UAWATTR ; Allowed to wite and set sonme attributes

4 = UA_ ALARM ; Allowed to acknow edge sone al arns

Ooxffffffff = UA_ALL ; All operations allowed when all bits set

I NTERPRETATI ON CommandCode OF int32 m
Codes used in the function calls.

0 = CC_NOOP ; -No operation

1 = CC_REQCONSOLE ; Request transfer of console to renote
2 = CC_SETCONSCLE ; Force to be set as console

3 = CC_ACKTRANSFER ; Acknow edge transfer

4 = CC_VWHATCONSOLE ; What is console

1000 = CC_USER ;O her conmands

C.2.13 Interface PCCUserAuth

| NTERFACE PCCUser Aut h
* This interface is used for user authentication. A client asks a
server for authentication codes based on a passwords, a user code
the code for the controlling function and the function to control.

* Revision history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First IEC CDV rel ease

VERS| ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W6

REQJI RED DOCUMENTATI ON

PASSWORDS ; It nust be docunented how passwords are configured in
; both client and server

REFERENCES

61162-420/FDIS O IEC(E) - 57 -

DATA TYPES Gener al
DATA TYPES User Aut h

* This connection point is used to identify a user and returns an

aut hentication code. The protocol will ensure that it is
possible to identify the client MAU between connection points and
i nterfaces.

* Precondition: Input user and consol e codes and password. | nput
optionally a specific user and consol e code. This may be
required by sone applications. A new request term nates
automatically any previous authorisations.

* Postcondition: Authorisation status. The requesting MAu wil |l
automatical ly have an authorisation |evel corresponding to user
and console. This will be used where applicabl e on ot her
requests to the server MAU. The tine field gives optionally a
tinme to live for the authorisation (zerois infinite). A new
request must be sent before this tine to validate the
aut hori sation. The authorisation code and descriptive string
speci fies all owed operations.

| NPUT
User G oup user ;. What user code
Consol eG oup consol e ; What control position
[8] char8_m spConsol e ; Optional specific console code or
[8] char8_m spUser ;. Optional specific user code or nul
[8] char8_m passwor d ; Password
QUTPUT
UaSt at us st at us ; return code
UaCode aut hCode : aut horisation code
Ti me ttl ; Time that authorisation is valis
int32_m consol e ; Consol e nunber
[32] char8_m aut hDesc ; Optional descriptive string

* This subscription point infornms all connected consol es about
current status.

* Precondition: The listeners consol e code nust be established by
doi ng an authorisation request. If not, the Isitner should
assune zero as this code never is used.

* Post condi tion: The conmand code specifies necessary actions:
REQCONSOLE and next Consol e is self: Acknow edge take over
SETCONSOLE: Regi ster new consol e in command, use provided data.
VWHATCONSCLE: | nformati on about new or changed consol e
configuration. Use provided data.

Q her: ignore

* The user, consol e, spConsole and spUser describes the
attri butes of the new consol e when SET, REQ or WHAT
CONSCLE. Invalid el se.

nul |
|

nul |

QUTPUT
CommandCode comand ; Command to consol es
int32_m i nConsol e : Current console in command
int32_m next Console ; Next to be console in conmand
User G oup user ;. What user code
Consol eG oup consol e ; What control position
[8] char8_m spConsol e ; Optional specific console code or
[8] char8_m spUser ; Optional specific user code or null

* This connection point does one of several things:
— I nquire about current console in comrand
— Ask for transfer to another console

- 58 - 61162-420/FDIS O IEC(E)

— Ask for forced transfer to this console

— Acknow edge transfer to this console

by the character string new console. It returns the name of

the workstation previously controlling the process as well as a
flag indicating whether the assignment has been executed
successful ly.

Precondition: Authorisation nmust have been established. A console
code for own console will be returned through that. One can ask
for transfer to own or to another. One can al so ask for console
in command (do not usually require authorisation).

| NPUT
ConmandCode comrand ; Operation to be perforned
int32_m next Console ; Myself or transfer to
QUTPUT
UaSt at us status
int32_m next Consol e ; Requested consol e number

61162-420/FDIS O IEC(E) - 59—
Annex D
(normative)

LNA-MAU companion standard

D.1 General principles

The LNA-MAU is a special MAU embedded in the LNA that can be used to interrogate the LNA
about its own status as well as the status of its connected MAUs and remote LNAs. The
purpose of this functionality is to implement a limited set of monitoring and debugging functions
in the system.

The information available from this MAU is illustrated in the below ER-diagram. Note that the
number of octets transmitted for a given session associated with an accept interface is valid for
that relationship alone, although it is transmitted in the session information data block.

Local LNA
address
status
noMAU
noRLNA
noSession
MAU Interface CP
name name name
status status type
4 formatString
Alnterface Clnterface
conLimit status
transLimit dataTrans

Session
MAUname
RMAUname
status
dataTrans
RLNA
address

Figure 16 — LNA-MAU information entities

THE LNA-MAU can be directly asked about its own status, about its local MAUs and about
known remote LNAs. By using local MAU as key, one can also get information about the MAUs
interfaces and, furthermore, their connection points. For accept type interfaces it is also
possible to get a list of the active sessions (remote MAUs connected to this interface). For all
connect interfaces and for all sessions it is possible to retrieve the number of octets
transmitted while the entity has been in use.

The general access mechanism is to enquire about information items based on a key and to
get a list of information items in return. A limit number of items can be returned and sometimes
it is necessary to make several calls to the retrieval function with changing start keys. All
retrieval functions use the input key to specify the first item to be returned. The value zero is
always interpreted as search from the start. The function returns a maximum number of items
related to the request, starting at the input key specified. The function will also return the next

- 60 - 61162-420/FDIS O IEC(E)

key that can be used as a new input or zero if there are no more items left. The function shall
not interpret an input key literally as a valid key, it shall always start a returned list at the input
key or at the closest key to the input key. If the key is useless as a start value, the function
shall interpret it as zero and start the listing from the beginning. All keys are unique and will not
normally be reused even if an entity disappears and another is created. However, the
uniqueness is limited by the implementation. Keys are only valid within one group of . entities,
i.e., an interface key may have the same value as a MAU key.

The users and writers of this application need to consider the dynamic nature of an LNA's
status. This means that one cannot be guaranteed consistency between consecutive calls and
that, e.g., one may not get the same number of interfaces returned from a interface list request
as is specified as that MAU's number of interfaces. Further more, this application will normally
run at a low priority not to interfere with the LNA's normal operation. This means that the status
returned is only an approximation of the LNA's status. However, in a steady state where no
new entities are defined or destroyed in the LNA, the application shall be able to return the true
state of the LNA.

The LNA status CP is of the subscribe type and will return-a new data block each time the
LNA's status changes (not including updates of transmission counts). Note however, that there
may be a delay between the status change and the subscription acknowledgement as the
status module normally runs on low priority.

D.2 Companion standards

D.2.1 Data types LnaMau

DATA TYPES LnaMau
* This nodul e defines a set of general data-types to be used in Pl SCES
conpani on standard specifications for the LNA- MAU.

* Revision history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First |EC CDV release

VERSI ON 1.2
DATE 2001-01- 02
RESPONSI BLE | EC TC80/ W&6

none

; CONSTANTS:

CONSTANT CONST_ELEM CPLIST IS 12
; The nunber of elenents in a connection point |ist.

CONSTANT CONST_ELEM I FLIST IS 12
; The nunber of elenents in a connection point |ist.

CONSTANT CONST_ELEM LNALI ST IS 40
; The nunber of elenments in alna list.

CONSTANT CONST_ELEM MAULI ST | S 45
: The nunber of elenents in a nmau |ist.

CONSTANT CONST_ELEM SESSI ONLI ST IS 12
: The nunber of elenents in a session |ist.

CONSTANT CONST_FORMAT_LENGTH 1S 1500
; The max. string length of a format string.

CONSTANT CONST_CPNAME_LENGTH | S 32
; The max. string length of a connection point name.

61162-420/FDIS O IEC(E) - 61—

CONSTANT CONST_| FNAVE_LENGTH | S 32
; The max. string length of an interface nane.

CONSTANT CONST_LNANAME_LENGTH | S 32
; The max. string length of a I na nane.

CONSTANT CONST_MAUNAME_LENGTH | S 32
; The max. string length of a mau nane.

| NTERPRETATI ONS:

| NTERPRETATI ON LNASt at us OF word8_m
;Definition of LNA status (local is either connected or unknown)

0 = undefined
1 = LNA_HEARD ; Heard about, but not connected to
2 = LNA_CONNECTED : Connected to

| NTERPRETATI ON MAUSt at us OF wor d8_m
:Definition of |ocal MAU st atus

0
1

undefi ned
LMAU_ACTI VE

| NTERPRETATI ON | FSt at us OF wor d8_m
; The definition of type IfStatus. Vari ables of this type may have
;the foll owi ng val ues:

0 = undefined
1 =1FWAT ; Being established
2 = | F_OPEN ; Open

' DATA BLOCKS

DATA BLOCK Lnal nfo
* | nformati on about any LNA

address_m address ;- The network address of LNA.
wor d32_m net wor kNode Node nunber of ditto

LNASt at us status The status

wor d32_m | naKey The LNA key

DATA BLOCK Maul nfo
* The data bl ock" Maulnfo describes a | ocal MAU.

[CONST_MAUNAME_LENGTH] char8_m name

MauSt at us status

wor d32_m nunber Connect | Fs
wor d32_m nunber Accept | Fs
wor d32_m maukKey

DATA BLOCK Al FI nfo
* Description of a MAUs accept type interface.

[CONST_I FNAME_LENGTH] char 8_m name ; The nane of the interface.

| f St at us st at us ; Status of |IF

wor d32.m noCps ; No of CPs

wor d16_m conLimt ; Sessionlimt

wor d16_m transLimt ; Transaction limt

wor d32_m noSessions ; No of sessions

wor d32_m i f Key ; Unique key for this interface

DATA BLOCK Cl FInfo
* Description of a MAUs connect type interface.

[CONST_I FNAME_LENGTH] char 8_m nane ; The name of the interface.

| f St at us st at us ; Status of |F

wor d32_m noCps ; No of CPs

wor d32_m dataTrans ; No of transmtted octets
wor d32_m

i f Key ; Unique key for this interface

- 62— 61162-420/FDIS O IEC(E)

DATA BLOCK CPI nfo
* Additional description of a connection point. Note that type is
included as first letter in format string.

[CONST_CPNAME_LENGTH] char 8_m nane
[word16_m CONST_FORMAT_LENGTH] char 8_m format String
wor d32_m cpKey

DATA BLOCK Sessionlnfo
* Description of a session. Note that the number of octets transmitted is
dependent on the interface for which the request is nade.

[CONST_MAUNAME_LENGTH] char8_m maunane ; The | ocal MAU nane.
wor d32_m mauKey ; Local MAU key
[CONST_MAUNAME_LENGTH] char8_m r maunane ; The renote MAU nane.
wor d32_m dat aTr ans ; Octets send for | F and session

wor d32_m | naKey; ; Renpte LNA

D.2.2 Interface PCCLNAStats

| NTERFACE PCCLNASt at s
* This is the LNA-MAU i nterface.

* Revision history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First IEC CDV rel ease

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W6

REFERENCES
DATA TYPES LnaMau

USAGE
Thi s Compani on Standard Description provides the interface to the
LNA-MAU. It is supposed to be a part of each LNA

REQUI RED DOCUMENTATI ON
LnaMau

CONNECTI ON PO NTS

SUBSCRI BE Get St at us
* This connection point shall be used to retrieve status information
about the LNA fromthe LNA-MAU. Any changes in status will be reported to
al | subscribers (change does not include bytes transmtted).

QUTPUT
Lnal nfo status ; The status of the LNA
wor d32_m noMVAU ; Nunber of |ocal MAUs.
wor d32_m noRLNA ; Nunber of renpte LNAs.
wor d32_m noSessi on ; Nunber of sessions.
Ver si on swhVer si on ; SWversion code and date

* This connection point shall be used to retrieve a list of MAUs attached

to this LNA
I NPUT

wor d32_m nauKey ; The first MAU to be listed
QUTPUT

[word32_m CONST_ELEM MAULI ST] Maulnfo list ; The list of MAUs.
wor d32_m next MauKey ; Next MAU or zero

61162-420/FDIS O IEC(E) - 63 -

* This connection point shall be used to retrieve a |ist of accept
Interfaces
associated with a MAU. Mre than one list of interface may exist. Each
interface list can be addressed by the |istNunmber attribute.

| NPUT
wor d32_m i f Key ; The id of first IF to be listed
wor d32_m mauKey ; The MAU key (see Get Mauli st).
QUTPUT

[word32_m CONST_ELEM | FLI ST] Al FI nf o alist ; The list of Accept
i nterfaces.

wor d32_m next | f Key ; Next {IF or zero

* This connection point shall be used to retrieve a list of connect
Interfaces
associated with a MAU. More than one |ist of dinterface may exist. Each
interface list can be addressed by the |istNunber attribute.

| NPUT
wor d32_m i f Key
wor d32_m mauKey

: The id of first |F to be listed
; The MAU key (see Get MaulLi st).

QUTPUT
[word32_m CONST_ELEM | FLI ST] Cl FInfo/ ali st i The list of Accept
i nterfaces.
wor d32_m next | f Key ; Next IF or zero

* This connection point shall be used to retrieve a list of MCPs of a
given interface and MAU. More than one |ist may exist.
Each |ist can be addressed by the |istNunber attribute.

| NPUT
wor d32_m cpKey
wor d32_m nauKey

;. First CPto be listed
;identification of MAU

wor d32_m if Key ; identification of interface
QUTPUT
[wor d32_m CONST._ELEM CPLI ST] CPI nf o cplLi st ; The list of CPs.

wor d32_m next CpKey ; Next CP or zero

* Return active sessions for one accept interface. Note that this function
returns the nunmber of octets sent on this session and this interface.

| NPUT
wor d32_m sessi onKey
wor d32_m mauKey
wor d32_m i fKey

; First session to be |isted
; identification of MAU
 identification of interface

QUTPUT
[wor d32_m CONST_ELEM SESSI ONLI ST] Sessi onl nf o sessi onli st
wor d32_m 'next Sessi onKey ; Next session or zero

* This connection point shall be used to retrieve a list of renpte LNAs
known to this LNA

I NPUT
wor d32_m | naKey ; First LNA to be returned
QUTPUT
[word32_m CONST_ELEM LNALI ST] Lnal nfo Iist ; The list of LNAs.

wor d32_m next LnaKey ; Next LNA or zero

- 64 - 61162-420/FDIS O IEC(E)

Annex E
(normative)

General alarm and monitoring companion standards

E.1 Introduction and general principles

This annex contains the companion standards for a general interface to automation and alarm
systems. The standards are also useful in the context of navigation, where they can be used
for interfaces to alarm systems or to higher-level decision support systems.

These companion standards are based on the manipulation of information based on tag
names. The tag name is an identifier for the information item. The term tag will in the following
be used synonymously with information item. Each tag is associated with a value, possibly an
alarm state and a set of attributes.

The companion standards provide the following general mechanisms:

a) search for tags on a specific MAU;

b) search for tags on the network (via anonymous broadcast);
c) reading and writing tag values;

d) reading and writing tag attribute values;

e) subscribing on values from individual or a set of tags;

f) Mechanisms for subscribing to and acknowledging alarms.

Access to tags can optionally be associated with user or workstation authentication. This is
normally necessary for alarm acknowledgement and value writing.

The companion standards described here are application independent. The set of tag names
will determine what application is associated with a certain MAU.

E.2 Alarm and monitoring system identifiers

Tag name: A text string identifying an information item. Several tag names can reference the
same information item.

Tag number: A code referencing one information item. There is a one to one relationship
between tag number and the information item.

Yard tag: A tag name (usually) assigned by the yard. The yard tag is normally associated with a
physical device, e.g., a temperature transmitter, and can in some cases also be associated to a
representative information item (tag number), e.g., the temperature measurement.

E.3 Functionality overview
E.3.1 Companion standard for tag based monitoring and alarm system

The purpose of the general alarm and monitoring companion standard is that all IEC 61162-4
applications of a certain class should supply one uniform service to other IEC 61162-4 clients
that allows the clients to read and write data from or to the server in a standard way. This
mechanism consists of a companion standard that defines certain general data objects for
reading and writing based on tag names.

61162-420/FDIS O IEC(E) - 65—

By having such a system, an application independent code can be generated that can be used
by any client to read and write to any server. This is particularly appropriate for "decision
support" type or "data fusion" type applications that lie on a higher abstraction level than the
basic control applications. It is still assumed that the control applications ‘have more
specialized function blocks for use in between them, for example for GPS data output.

E.3.2 Client-server architecture

The principle for use of these companion standards is that a server makes information items
available to any client in the system. Likewise, given that the appropriate functionality is
installed, the client can write to information entities or subscribe to updates. It is assumed that
the server does not need to know the clients a priori and that the system is based on a client-
server architecture.

E.3.3 Tag number

Each information item in one server is identified by a tag number. This number is unique for
that server. To each tag number there can be several tag names. This can be used to provide
the same information item with different names based on yard naming principles (yard tags),
standard naming principles and/or manufacturer dependent naming principles.

The basic interface component provides functionality for mapping tag names to tag numbers.
This is through a search function with functionality dependent on the server in question. Very
simple servers may just have a fixed set of tag numbers with a static mapping to a set of tag
names. These servers may not support any search function at all.

Tag numbers are the identifiers used when tag related information is transferred to and from
the server.

E.3.4 Tag sets

Servers that support subscribe and alarm handling do this with the help of tag sets. Tag sets
are also established through searches, but can be manipulated with the help of functions in the
PCCTagSet interface.

Subscriptions on values or alarms can only be done through tag sets.

E.3.5 Tag information

Each tag is associated with a set of information attributes. These can be retrieved through the
MCP Get Tagl nf o. This information is, for example the engineering unit, expected precision,
sampling interval, a description string, etc. It is expected that this information is static
throughout the tag’s life.

E.3.6 Tag attributes

Some tags can have attributes associated with them. These are semi-static information that
can change through the tag’s life, but not very often and rarely or never uncontrolled, for
example filter constants, alarm limits, scaling factors, etc. The number of attributes can be
read in the tag information data structure and the attributes can be inspected and changed
through the attribute related interface components.

E.3.7 Tag data

Each tag has a data value associated with it that is expected to change more or less
continuously. The data value can be read, written or subscribed to through the relevant
interface components.

- 66 — 61162-420/FDIS O IEC(E)

Read data will always have a quality flag saying to what degree the value has the required
quality, a time stamp and pending alarm flag information.

E.3.8 Alarms

Alarms are a special case of tags where the server provides a mechanism for keeping a watch
on the tag value to raise an exception if the value changes in some defined manner. Alarms
are also assigned a sequence number that allows the client to determine .if more than one
alarm has been raised on one tag.

Alarms needs to be acknowledged before they are removed from the active alarm list. This is
the case even if the value goes back to normal.
E.4 Application classes

The companion standards define three different application classes, all derived from
PACFul | Appl i cati on. These classes are shown below.

PACReadableServer
PCCTagDatabase
(PCCTagText)
(PCCTagStream)
(PCCTagSubscribe)
(PCCTagAttributes)
(PCCTagNetsearch)

PACWritabl rver
PCCUserAuth
PCCTagWrite

(PCCTagAttributeWrite)

PACAlarmSystem
PCCTagAlarm

Figure 17 — Tag application classes

Each application class has certain capabilities that can be added to and thereby specializing
the class into a more advanced class:

a) PACReadabl eSer ver: this is the basic class with capabilities for searching for tags and
for reading values, text or floating point. It can be extended with component interfaces for
subscription and for reading attribute values. It can also be extended with a component
interface for network wide search for tags;

b) PACW i tabl eServer: this is an extension that allows writing tags and optionally
attributes. This application class requires user authentication;

c) PACAl ar nSyst em this extends the writable server with a subscription on alarms and a
mechanism for acknowledging alarms.

61162-420/FDIS O IEC(E) - 67 -

Note that both the subscription and the alarm handling component interfaces require the use of
the set definition interface component.

All interface components except the user authentication component shall be defined as
belonging to the physical interface “Tags”.

E.5 Companion standard structure

The companion standards are organized in several component interfaces. as discussed in the
previous clause. In addition to the interface components, the definitions also contain the
application definitions and a general data type definition.

The diagram below shows the relationship between the interface components. Note that the
three classes TagRead, TagWite and TagAl ar m represent the application classes as
discussed in the previous clause and not interface classes as such.

Q
| PCCTagStream | PCCTagText ‘k
GetInfo/GetTaglnfo GetTagStream GetTagText SendReq
GetTagCodes ReceiveAck _
GetTagValue
GetTagAttrinfo SubscribeOnTime ModifyTagValue GetAlarms
GetTagAttrValues SubscribeOnChange AckAlarm

| | !

PCCTagS . .
GetTagSet SetTagAttrValues
RemoveFromTagSet
AddToTagSet

Figure 18 — Tag interface components relationships

The diagram represents each of the basic application types as a specialization of its super-
class where each specialization level aggregates more component interfaces. The empty rings
denote optional component interfaces and the derivation triangle a class that needs its super-
class for instantiation: The attributes are the connection points.

E.6 File structure
In addition to the classes described in the previous diagrams, there are also a general data

type definition file and a file with standard tag names. The table below defines the files and
their contents.

- 68 - 61162-420/FDIS O IEC(E)

Table 5 — Tag related companion standards

Companion standard Description File name
PACReadableServer Application for reading tagread.mcs
PACWritableServer Application: add write tagwrite.mcs
PACAlarmSystem Application: add alarm handling tagalarm.mcs
TagData Data type definitions tagdata.mcs
PCCTagDatabase General data base functionality datag.mcs
PCCTagText Read text value tags datat.mcs
PCCTagStream Read a stream address datas.mcs
PCCTagNetsearch Search network for tags datan.mcs
PCCTagAttributes Read and find attributes dataatt.mcs
PCCTagSubscribe Subscribe to tag values datasub.mcs
PCCTagWrite Write tag values dataw.mcs
PCCTagAlarm Read and handle alarms dataa.mcs
PCCTagSet Define set of tags dataset.mcs
PCCTagAttributeWrite Write attribute values dataattw.mcs
TagStandard Standard tag names tags.mcs

E.7 Standard tag names
E.7.1 General

E.7.1.1 Internal and external representation

Note that the tag name has to be encoded in a fixed number of characters and, due to protocol
requirements, adhere to a fixed structure. These rules apply only to the protocol and internal
representation may use other formats, for example more compact to save storage or search
times. It may also be useful to format the tag name differently for presentation to humans,
although this may cause problems with recognition of the same tag name on different systems.

E.7.1.2 Tag name length

The tag name is limited to 24 characters maximum. Shorter tag names shall be null terminated.

E.7.1.3 Character set

All standard tag names (P-type and S-type) shall only use upper case letters (A to Z inclusive),
lower case letters (a to z inclusive) or decimal numbers (0 to 9 inclusive). In addition, the
special character dash (-), under score (_) or period (.) can be used.

Character.in this context is the basic IEC 61162-4 type char8_m

E.7.1.4 General tag name structure
All tag names shall have a structure as described below:

a) Tag name class: the first character shall be a lower case letter identifying the tag name
group. Currently the following groups are defined:

p: tag with name conform to the PCS rules presented here;

y: yard tag with name structure defined by external entity;

s: standard tag pointing to a ship-independent information item;
i: internal tag defined by manufacturer.

61162-420/FDIS O IEC(E) - 69 -
b) Tag name body: the rest of the name is structured dependent on the tag name class.

E.7.2 Structure of P tag name class

E.7.2.1 Introduction

The P tag name class body is structured according to the rules presented in this clause. The
name body will be divided into groups, each consisting of a defined number of upper case

characters followed by, from zero to any number of decimal numbers. The name is structured
so that it can be parsed by a regular expression.

E.7.3 General structural rules
E.7.3.1 Outline structure

The outline format for the p class tag name is presented below.

pMann. SGhn. TC. nn

p Identify p class
MG Main group (two letters)
nn Optional main group instance number

SG
nn
TC
nn

Sub group (two letters)

Optional sub group instance numnber
Data type code (two |etters)

Uni que serial nunber

Each group of the tag is delimited by a period (full stop), except after the first 'p'. The main
group and the sub group may have an instance number immediately following.

E.7.3.2 Tag name length and encoding
The maximum length of 24 characters allows group and sub-groups of up to three digits and a

serial number of up to eight digits. It is possible to compress this in an internal representation
by omitting dots and the leading 'p'.

Special coding with more than three digit group numbers can be used for certain tag types, for
example container or other modular cargo. However, the total length shall not exceed
maximum name length.

E.7.3.3 Group and sub-group number structure
The group and sub-group number shall be a decimal number, without leading zeros. In cases

where there is only one instance of the indicated group on board (e.g. only one main engine)
the instance number shall be omitted.

E.7.3.4 Serial number structure

The serial number will normally be a manufacturer dependent serial number intended to
distinguish between otherwise identical tag names. For some types of tags (e.g. contain related
identifiers) the serial number may contain structural information.

E.7.3.5 Uniqueness of name

The tag name must be unique within a MAU. It should be unique over the ship (the PISCES
network), although this is more difficult to ensure.

The main group codes must be unique. The general sub-group codes are unique among sub-
groups (achieved by assigning special first letters to these groups).

Other sub-group codes must be unique among the main groups in which it is used.

- 70— 61162-420/FDIS O IEC(E)

E.7.4 Main process codes

The main process code consists of two upper case letters optionally followed by a decimal
number. The table below lists the currently defined codes.

Table 6 — Main process codes

Process code Number Explanation
MP Engine Propulsion engines
MG Engine Generator and auxiliary engines
ML Lubrication oil systems
MC Cooling systems, fresh and/or salt water
MB Boiler
MD Shaft Drive train, i.e. shafts, gears, clutches, propellers
MF Fuel oil systems
MM Miscellaneous machinery
CB Tank Ballast system
CL Tank Liquid cargo tanks
CH Hold Bulk cargo
CR Reefer related entities, cooling (except CH groups)
CM Deck Modular cargo on decks (e.g. RO-RO)
cC Hold Container cargo
Cco Other/general cargo
SH Ship data (name, captain, yard)
HU Hull related data
HF HVAC, climate control, provisions, waste, sanitary
NA Navigation (position, speed, ARPA, ECDIS, etc.)
EV Environment (wind, waves, weather)
FA Central Fire and gas alarm
SY System/sub-system (monitoring and alarm system itself)
oT Other/miscellaneous

The number column specifies what the number code, if used, shall indicate. The number field
shall not be used if there is only one instance of the device (e.g. main machinery) on board.

Note that machinery and cargo and ballast main-groups form two super-groups. These super-
groups use the same first character (M and C respectively).

E.7.5 Process sub-codes

The second group consists of two upper case letters that defines a sub-group for the main
process group. The sub-groups are divided into three classes dependent on whether they are
used anywhere on the ship (general sub-groups), whether they are used within one super-
group (e.g. machinery or cargo) or if they are specific to one single main group. The sub-group
code can be followed by a number as for the main code.

E.7.6 General sub-groups

The following table contains the currently defined sub-groups that are in general use over more
than one main process group. All codes use 'X', 'Y' or 'Z' as first character. These characters
are reserved for these groups.

61162-420/FDIS O IEC(E) -71-

Table 7 — General sub-groups

Sub-group Number Explanation
Y4 No specific subgroup
XP Pump
XV Valve
XE Electrical motor
XT Tank
XM Manifold
XL Pipe-line, tube
XC Compressor
XS System/subsystem (network, monitoring system itself)
XH Heat exchanger

Numbering will normally be dependent on the main group in use.

E.7.7 Automation related sub-group

This standard does not cover general automation and no more details in this area are provided
here.

E.7.8 Navigation sub-groups

The following table identifies navigation related sub-groups.

Table 8 — Navigation sub-groups

Sub-group Number Explanation Main Process
Codes
GP GNS receiver NA
LC Loran C/Chaicka receiver NA
AR ARPA radar NA
EC ECDIS/ECS NA

E.7.9 Data type indication group

The third group is two upper case letters specifying the kind of information item. The code is
based on a simplified version of general process equipment coding rules.

Table 9 — Data type indicators

Letter First position meaning EU Second position meaning
A Angle rad Alarm (no indication — binary)

B

C Conductivity (electrical) QorS Control (output)

D Density/specific gravity kg/m3 Documentation (data models, text: in)
E Voltage \

F Flow m®/s

G Dimensions m

H

-72 - 61162-420/FDIS O IEC(E)

Letter First position meaning EU Second position meaning

| Current (electrical) A Indication (input)

J Power kw

K Time s

L Level m HMI related data (input)

M Moisture or humidity % Maintenance/calibration data/history (in)

N

o

P Pressure Bar Parameter (filter, trend: in or out)

Q Quantity, event or counter

R Record/trend (input)

S Speed or frequency Hz, m/s, System status codes (in or out)
knots, RPM

T Temperature °c

] Function block (composite) Multifunction (in or out)

\% Viscosity Version/revision codes (input)

w Weight or force kg or N

X Any meaning Any meaning

Y System level

4 Position m or nm

The first character defines the type of data entity pointed to by the tag. Of special interest are:

- U: this code is used for composite data entities (function blocks);

- X: this code is used for entities not otherwise defined;

- Y: this code is used for entities relating to monitoring and alarm device itself.

The second character specifies if the entity is an output or input and if it is related directly to

a physical state (alarm, indication or control) or if it is related to more system-oriented
information (HMI, documentation, version codes, etc.).

A complex function block with several inputs and/or outputs would normally be coded as 'UX'.

E.7.10 Use of engineering units
The engineering unit in use will be available for the general alarm and monitoring system by

looking up static attributes of the tag. However, as a rule, the Sl units corresponding to the
indicated measurement type (first character) shall be used.

The preferred engineering unit is listed in the EU column.

E.7.11 Sequence number

The last part of the tag name is a sequence number code. This code is specific to a particular
manufacturer or system integrator and cannot in general be relied on to have any specific
meaning. The sequence number shall consist of decimal digits only. Leading zeros are allowed.

61162-420/FDIS O IEC(E) - 73 -

E.8 Structure of standard tags (S class)

The standard tags (s name class) will use the same format as the p class tags, except that the
leading letter will be a lower case 's'.

The ‘s’ will show that this tag is a ship independent measurement with properties defined in a
general ship operational data model. The preparation of this model is not within the scope of
this standard.

E.9 Structure of yard tags (Y class)

The yard tag structuring shall be determined by the yard or any other authority that has an
overall responsibility for the design of the ship. The main purpose of the yard tag is to provide a
link between the automation system and the physical ship. It is' suggested that all indicators
identified by a yard tag shall have the same yard tag on their corresponding measurement or
alarm.

E.10 Structure of internal tags (I class)

Internal tags have no particular rules for structuring other than the first character being the
lower case letter ‘i’.

E.11 New tag name classes

Other tag name classes can be defined by the standard organizations that maintain these
specification documents. No user should rely on any specific leading letter being free for own
internal use.

E.12 General quality indicators

All information retrieved through the tag database mechanisms will be quality controlled by the
providing system. This quality control consists of several parts as discussed in the following
clauses.

E.13 Certification

The quality control principles for a specific application may have been checked and certified by
some agency or by the manufacturer himself. This certification is not mandatory and it is not
within the scope of this standard. However, the Get | nf o MCP provides a possibility to specify
if any certificate has been awarded to the quality control mechanisms. The actual certificate or
specification document must be obtained from the manufacturer.

E.14 Time stamp
All measurements shall be marked with the time at which they were collected. For raw sensor

data, the time stamp should be the time of the data acquisition. For derived data, it may be an
estimate of the time of validity.

The time stamp is accurate within the limits defined by the sanpl eTi me attribute of the
relevant Tagl nf o data block.

- 74 - 61162-420/FDIS O IEC(E)

E.15 Validity flag

All measurements shall be marked with a validity flag saying if the value has the required
quality or not. The flag can also attempt to quantify the level of non-conformance with quality
requirements. Legal values for the validity flag are defined as the interpretation St at eCode.

The required quality is defined in the Tagl nf o data block in the form of the preci si on and
sanpl eTi me attributes.

E.16 Authentication

The application providing this interface shall specify to what level the data values are
authenticated, i.e. guaranteed to be not tampered with. Normally, this. will depend on the
mechanisms for data acquisition used by the application.

The authentication level is defined by the aut henti cati on flag in the Tagl nf o data block.

E.17 Companion standard specifications

E.17.1 DATA TYPES TagData

DATA TYPES TagDat a
* This specification contains general data definitions for tag based
dat a access.

* Revision history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First I EC CDV rel ease

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TC80/ W6

REFERENCES
Cener al

Tag identities
| NTERPRETATI ON TagNunber OF int32_m
* The container for tag nunbers. The nunber zero is reserved as no
tag.

0 = NO_TAG ; Undefined tag

* Tag name for a neasurenent point, with termnating null or
term nation at end of array (max 32 significant characters).

* Some interfaces will contain both internal tag codes constructed
as specified in this standard and yard specific codes. This
neans that different tag names can have the sane tag nunber.

TA BLOCK Tagld
* An aggregate of tag name and nunber. Note that different tag
names may have the sane nunber (aliasing of nane is allowed).

TagNunber number ; Tag nunber
TagNanme nanme ; Tag name

61162-420/FDIS O IEC(E) - 75—

| NTERPRETATI ON TagSet OF int32_m
* An identifier for a set of tags. A valid set id points to an
internal structure in the server that lists all tags in the set.
Sonme servers can have statically defined sets. The value zero is
used to indicate no valid set. The ALL_TAGS set defines all tags
in the server (not always supported as set).

NO_SET
ALL_TAGS

Various application classification info

I NTERPRETATI ON Conformance OF [32] bool _m

These bit fields are used to indicate conformance level for this
interface. This corresponds to the nunber of conponents supported
with the TagbData interface taken as inplicit. Additional
conponents are:

* The | NCMAP/ DECMAP fl ags indicate if the nunber
of tag codes in use changes during the life time of the
server. The first means that the nunmber of tags may increase,
the second that it nay decrease.

0 = TC_I NCVAP ; Increnent tag nunber nap

1 = TC_DECNVAP ; Decrenent tag nunmber nap

2 = TC_ATTRI BUTES ; Additional support of TagAttributes

3 = TC_ALARM ; Addi tional support of TagA arm

4 = TCWRITE ; Additional support of TagWite

5 = TC_COWPLEX ; Addi tional support of TagDataConpl ex

6 = TC_STREAM ; Additional support of TagDataStream

7 = TC_SUBSCRI BE ; Addi tional support of TagDataSubscri be

INTERPRETATI ON Certificates OF [16] bool _m
These bit fields are used to show which certificates the
interface has. Al false neans no certificates.

TC_ONNQA ; Oan docunentation on data QA

TC_EXTQA ; External certificate for data QA
TC_OANNDA ; O docunentation on authentication
TC_EXTDA ; External certificate for authentication

WNEFEO
o mnn

I NTERPRETATI ON TagKeyCode OF [32] bool _m
These tag keys are used to specify the allowed key type searches
supported by an inplenmentation of the interface. The key is one
bit ina 32 bit word (max is 24 bits as 8 is allocated to
i npl ement ation specific keys).

0 = KEY_NONE ; No key based search, returns all tag codes
1 = KEY_NUMBER ; Search on tags by tag number all owed

2 = KEY_NAME ; Search on tags by name all owed

3 = KEY_WCNAME ; Wldcard search by nane all owed

4 = KEY_LOC ; Search by | ocation code (LocationCode)

5 = KEY_TYPE ; Search on tag type (TagType)

23 = KEY_SETDEF ; Can/will define a tag set

24 = KEY_USER ; I nplenentation specific keys to 31

I NTERPRETATI ON TagKey OF char8_m
Contai ns char8_m key search pattern. The string shall be null
termnated or ternminated at end of array. It is legal to send an
empty string for KEY_NONE. Only one search bit can be set fromthe
following possibilities:

* KEY_NONE: No pattern (length = 0), Return all tags.

* KEY_NUMBER: A single nunmber, a series of deciml nunbers
separated by comma (,), and/or a range shown by two nunbers
separated by a minus sign (-), e.g., "23", "23,24,26" or
"20-25". In the latter case, the enpty string represents

- 76 — 61162-420/FDIS O IEC(E)

infinity, e.g., "0-" is all nunbers. The nunbers represent tag
code nunbers. This function is nost useful to define sets.

* KEY_NAME: A single tag nanme or a series of tag names separated
by comma: "tagl" or "tagl,tag2"

* KEY_WCNAME: One name with the follow ng w ldcards:
— °?" (question mark) — any one |l egal character,
— "*' (asterix) — any length sequence of any |legal character
Exanpl es: "tag?" and "ta*" both match "tagl" and "tag2", ta* is
the only that match "tagl0".

* KEY_LCC, KEY_TYPE: A nunber (as KEY_NUMBER), with | ocation codes
(see general data types) instead of tag code nunbers.

I NTERPRETATI ON TagType OF int16_m
This code is used to specify the type of a tag.

TT_VALUE ; Plain nuneric type (f64)
TT_TEXT ; Plain text type ([64]c8)

TT_ALARM ; Alarmtype, VALUE with alarmlimts
TT_STREAM ; Streanmifile type

TT_FB ; Function block, value with attributes
TT_COWPLEX ; Gher formatted type

I NTERPRETATI ON TagAut hentication OF int16.m
This code specifies the mechani sm used to authenticate a given
tag. This applies to both originator and quality. TQ NOTAMPER
and TQ AUTH is used if the device flags all internal and external
precision loss and tanpering or if the value cannot be tanpered with
or lose precision. Other flags are set to qualify this
statement. Lower val ues neans better authentication.

0 = TQ NOTAMPER ; Val ue cannot be tanpered with, quality controlled
1 = TQ AUTH ; Data is fully authenticated, all exceptions flagged
10 = TQ_CAUTH ; Full authenticated internally and controlled source
20 = TQ USOQURCE ; Full authenticated internally uncontrolled source
30 = TQ TOPERATOR ; -Operators are trusted and checked, but changes

; are not flagged.
1000 = TQ_NONE ; ‘No aut hentication in force

I NTERPRETATI ON TagSemantics OF [16] bool _m
This code is used to specify the semantics of a tag. Read and
wite flags are not exclusive: Both neans that the system can
performa function call w th output dependent on input. Constant
and unfiltered can be used in conjunction with other flags
(normal Iy only read).

TS_UNKNOWN

TS ‘READTHROUGH ; Read directly from physical unit
TS_READBUFFER ; Read from physical unit via buffer
TS_WRI TETHROUGH ; Wite directly to physical unit
TS_WRI TEBUFFER ; Wite to physical unit via buffer

~NOoO OB WNELO

TS_CONSTANT Const ant val ue
TS_UNFI LTERED No anti-aliasing done
TS _QUEUED Events are queued, no changes | ost

DATA BLOCK Tagl nfo
* Static information about a tag.

* |f engineering unit is undefined (EU OTHER), the text
representation of the unit (for printing purposes) shall be
defi ned.

* The precision is the nminimmscalar distance that is
necessary to say that a difference between two nmeasurenents is
significant. This has neaning for scal ar neasurenents and
usual ly also for other multi-dinensional nmeasurenents, e.g.,
position (typically use |length of distance vector).

61162-420/FDIS O IEC(E)

- 77 -

The sanple interval is the maximumtinme before the server has. a
new measurenment of the tag val ue ready. Check semantics for
neani ng of sanple time (read and wite through renders it

neani ngl ess). Note that tag values normally are anti-aliasing
filtered before being supplied to user (based on sanple

time). The unfiltered semantics flag neans that this is not
done.

The tagAttributes entry specifies the nunber of
extra attributes that the tag data base stores (see
TagAttributes type for predefined attributes).

The fieldFlags shall be set for all valid entities. Al false
neans that the block is invalid. All true is legal if non-used
entities contain a proper value (including null termn nated

strings and null val ues).
TagNunber t agNunber Nuneric code for tag
[48] char8_m description Description of tag
TagType tagType Type of access mechani sm
Engi neeri ngUni t engUni t Engi neeri-ng unit or equival ent
[8] char8_m euText Textual engineering unit

TagSemanti cs
TagAut henti cation

Semantics of tag operation

Qual ity control mechani sms

tagSemanti cs ;
aut henti cation ;

fl oat 64_m preci sion Measur enent preci si on
wor d32_m sanpl eTi me Sanmple interval in ns
intl6_m tagAttributes Attributes supported
[10] Fi el dOk fiel dFl ags Field validity flags

Dynam c val ues

| NTERPRETATI ON St at eCode OF int16_m

*

ONEF,O

©O©oo~N®

399
400

State codes. Unused codes are user defined. For future expansion

these codes should start at USERSTATES. Note the classifications

of state codes. they are in increasing val ue:

— SC_NORMAL i s nornal

— Up to and includi ng SC_AUTHENT neans that val ue may have | ost
authenticity, but is still under control.

- Up to a.i. SC_PRECISION I'oss in precision
— Up to a.i. SC UNRELI ABLE possi bl e spurious or |ocked val ue
— Up to a.i. SC DEFECT sensor malfunction
— Up to a.i. SC_OPERR operation errors
SC_NORMAL operation conpl eted as expected

WWW RRPRRPRRPREPRRE R
OO0 ©WOO0OO0OO0OO0OO0O0OO ©VWO
NRPRO ONOOBRWNRO-:

= SC FI LTERED ; Filter may affect value "unreasonably”

= SC OPERATOR ; Operator set val ue

= SC AUTHENT ; Other event that can effect authenticity
= SC_PRECI S| ON1 ; Loss in precision by factor 10

= SC_PRECI S| ON2 ; Loss in precision by factor 100

= SC_PRECI SI ON3 ; Loss in precision by factor 1000

= S ;

C PRECI SI ON

SC_TI MEQUT

SC_BADSENSOR

SC_UNRELI ABLE

Unknown | oss in precision

Updat e ti meout
Unreliabl e val ue

exceeded by source

Sensor specific errors follows

= SC_OPEN ; Open circuit

= SC_CLOSED : Closed circuit

= SC_SHORT ; Short circuit

= SC_BROKEN ;. Broken connection

= SC_NOT_AVAI LABLE ; Input or output is not available

= SC_MAI NTENANCE ; Unit under mai ntenance

= SC_BLOCKED ; Input or output is blocked by operator
= SC_DEFECT : Unit is defect

= SC_NooP ; Specified tag does not support operation
= SC_NOTAG ; No such tag

= SC_NCSET ; No such tag set

= SC_OPERR ; Unspecified error in data retrieval

= SC_UDEAD ; Unit itself is dead

- 78 — 61162-420/FDIS O IEC(E)

401
499

SC_ULI NK ; Link to unit is dead
SC_UCODES ; Last unit related error

10000 = SC_USERSTATES

I NTERPRETATI ON Al arnfSt ate OF [16] bool _m
* Alarmstates bit map. Al false is nornal. Use alarminterface
to retrieve detailed alarmstate information. NONESSENTI AL
shall only be set if there is another bit set and if the signal
originates froma systemthat is not defined as essential, i.e.,
that alarms shall have a lower priority than for essenti al
systems. WARNI NG need not be set when ALARMis set.

0 = AC_WARNI NG ; Value is outside nornmal, but no alarm

1 = AC_ALARM : Value is in alarm area

2 = AC_NA WARNI NG ; Non-acknow edged war ni ng(s) exists

3 = AC_NA_ALARM ; Non-acknow edged al arn{(s) -exists

4 = AC_NONESSENTIAL ; This signal is not froman essential system

DATA BLOCK TagVal ue
Val ues for one tag with standard f64 fornat.

TagNunber t agNunber ; Numeric code for tag

St at eCode state ; State code

Al ar nt at e al arm ; Most inportant active alarm
d obal Ti ne tinme ; Last updated

fl oat 64_m val ue ; Current val ue

DATA BLOCK TagText
Val ues for one tag with standard character fornmat

TagNunber t agNunber 7 Numeric code for tag
St at eCode state : State code

d obal Ti ne tinme ; Last updated

[64] char8_m val ue ; Current val ue

| NTERPRETATI ON TagAttrNunmber OF int32_m
* Each tag can have certain attributes associated with it.
Normally, these are alarmlinmts and sonetines filter constants.
This |ist specifies some common attributes. Additional
attributes can be defined for an interface by codes from TA USER

and hi gher.

0 = TA_NONE

1 = TA_ALARMLOW

2 = TA ALARVHI GH

4 = TA_ALARM-ONLOW
3 = TA_ALARVHI GHHI GH

1000 = TA_USER

I NTERPRETATI ON TagAttrStatus OF int16_m
* The status of an attribute value can be:

TAS_VALI D ; value is valid and activated
TAS_DI SABLED ; value is valid, but disabled
TAS_NOATTRIBUTE ; no such attribute for tag
TAS_NOTAG ; no such tag

wWwNPE O

DATA BLOCK TagAttrlnfo
* This is the container for an attribute information structure.
Text strings are enpty if not used. The description string
shoul d be suitable for printing out information about the
attribute in a table, e.g., for alarmlinmts.

TagAtt r Nunber attribute ; Attribute code

61162-420/FDIS O IEC(E)

[32] char8_m

description ;

79—

Description of attribute

Engi neeri ngUnit engUnit Engi neering unit or eqival ent
[8] char8_m euText ; Textual engineering unit
Bl ockCk valid ; valid flag

DATA BLOCK TagAttr Val ue

* This is the container for an attribute
TagAtt r Nunber attribute ; Attribute code
TagNunber t agNunber ; Tag nunber
TagAttr Status st at us ; Status of val ue
fl oat 64_m val ue : The val ue

DATA BLOCK TagAttr Val uew
* This is the container for an attribute wite val ue
TagAtt r Nunber attribute ; Attribute code
TagNunber t agNunber ; Tag nunber
fl oat 64_m val ue : The val ue

Alarmrel ated data definitions

| NTERPRETATI ON Al ar nSequence OF int16_m

* A data value pair of tag number and alarm sequence nunber will identify

an alarminstance. This is the sequence nunber.
| NTERPRETATI ON Al ar mCode OF i nt 32_m

* Alarmcodes. Zero is normal. Codes above USERALARMS are user
defi ned. Codes bel ow USERALARVS are reserved for future
expansi on.

0 = AC_NORMVAL

1 = AC_SOVEALARM ; Undefined type of alarm

2 = AC_LONOW ;Signal has very | ow val ue

3 = AC H GHHI &H ; Signal has very high val ue

4 = AC LOW ; Signal has | ow val ue

5 = AC H GH ;- Silgnal has high val ue

6 = AC_INSTRUMVENT_HIGH ; I'nput value too high for instrunent

7 = AC_| NSTRUVENT_LOW ; Input value too |ow for instrunent

8 = AC DEVI ATI ON_ Low ; Low devi ati on between signals

9 = AC _DEVI ATI ON_HI GH ; High deviation between signals

10 = AC RATE_OF RISE ; Signal rising too fast

11 = AC_OSCI LLATI ONS ; Signal oscillating

12 = AC_TOO _LONG ; Too sl ow response

13 = AC_OPEN ; Input open

14 = AC CLCSE ; Input cl osed

15 = AC_ERROR : Internal instrunent error

16 = AC_OPERATOR ; Operator intervention in instrument

100000 = AC_USERALARMS

DATA BLOCK TagAl ar nval ue
* Values for one tag with alarminformation. The value will have to

be interpreted according to the informati on specified in the

Taglnfo data bl ock.

TagNumber t agNunber
Al ar nSequence segNunber
St at eCode state

Al ar nCode al arm

Al arntt at e aState

G obal Ti e time

fl oat 64_m val ue

fl oat 64_m limt

Use state code to check if block is ok.

Nurmeric code for tag
Alarminstance for this tag
State code

Al arm st ate code

| nportance of alarm

Time of trigger

Current val ue

Limt that were broken

- 80 - 61162-420/FDIS O IEC(E)

E.17.2 Application PACReadableServer
APPLI CATI ON PACReadabl eServer DERI VED FROM PACFul | Appl i cation
* This application contains the general framework for the creation

of an interface to any type of data server. Based on a tag nane
(16 character text string), it is possible to read the data item

* Revision history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First I EC CDV rel ease

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W6

REFERENCES

PCCTagDat abase
; The following interfaces are optional, and can be added
PCCTagText
PCCTagSubscri be

PCCTagAttri butes
; PCCTagNet sear ch

* The application is the mninuminplenentation of a tag based data
base reader. Refer to the individual interface specifications for
detail ed discussion of functionality. Additional interface
conponents can be added to support subscription or network w de
search capabilities. This has to be done as derivations fromthis
cl ass.

ACCEPT TagDat a
| NTERFACE COVPONENT PCCTagDat abase
; And optionally one or nore
; | NTERFACE COVPONENT PCCTagText
; | NTERFACE COVPONENT PCCTagSubscri be
; | NTERFACE COVPONENT PCCTagAttri butes

; If net search shall be used, one nust al so provide accept and connect
; interfaces.

; CONNECT ABCML

; | NTERFACE COVPONENT PCCTagNet sear ch
; ~ACCEPT ABCML

; | NTERFACE COVPONENT PCCTagNet sear ch

E.17.3 < Application PACWritableServer
APPLI| CATI ON PACW it abl eServer DERI VED FROM PACReadabl eServer

* This application contains the general framework for the creation
of an interface to any type of data server. Based on a tag nane
(16 character text string), it is possible to read and wite the
data item

* Revision history:
010102 1.2 First IEC FD S rel ease

61162-420/FDIS O IEC(E) - 81—

990831 1.1 First I EC CDV rel ease

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TC80/ W6

REFERENCES

PCCUser Aut h
PCCTagWite

; The following interfaces are optional, and can be added

; PCCTagAttributeWite

* The application is the mninmuminplenentati on of a tag based data
base witer. Refer to the individual interface specifications for
detail ed di scussion of functionality. Additional interface
conponents can be added to support attribute wite.

ACCEPT Aut henticate
* Need one interface for user authentication.

| NTERFACE COVPONENT PCCUser Aut h

ACCEPT TagDat a
* and the actual wite interafce.

| NTERFACE COVPONENT PCCTagWite
; And optionally

; | NTERFACE COVPONENT PCCTagAttri buteWite

E.17.4 Application PACAlarmSystem
APPLI CATI ON PACAl arnByst em DERI VED FROM PACW i t abl eServer

* This application contains the general framework for the creation
of an interface to any type of data server. Based on a tag nane
(16 character/ text string), it is possible to read and wite the
data item

* Revi sion history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First I EC CDV rel ease

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W6

REFERENCES

PCCTagAl ar m

* The application is the mininuminplenmentation of a tag based alarm
system Refer to the individual interface specifications for
detail ed di scussion of functionality.

- 82— 61162-420/FDIS O IEC(E)

ACCEPT TagDat a

| NTERFACE COVPONENT PCCTagAl ar m

E.17.5 Interface PCCTagDatabase

| NTERFACE PCCTagDat abase
* This interface contains the basic functionality for reading and
witing tag based data itens froma data base. This part of the
interface is used to access the tags data base and determ ne
properties of tags.

* Revision history:
010102 1.2 First IEC FD S rel ease
990831 1.1 First I EC CDV rel ease

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W6

USAGE
* This interface allows the | ook-up of tags to get interface specific
nuneric tag codes. Tag codes can be retrieved fromthe Get TagCodes
entry based on a key search. Several key types nmay be legal. It is
possible to retrieve information on the tags and the current
val ue. Notes to inplenentors:

* This interface uses an internal code (TagNunber) to reference a
tag. The value of this code for a given tag nmay or may not be
the sanme between two different/ connects to the MAU i npl enenti ng
the server. The Getlnfo instance code should be used after each
server restart to check if tag code mappi ngs has been changed.
This code shall reflect the foll ow ng:

* |t is legal to build the tag data base increnentally while the
server is running.

* |t is legal to renpbve tags fromthe data base while the server
i s running.

* |t is not legal to reuse internal codes for different tags.

* The tag data server may allow the client to search for tags
based on various keys (TagKeyCode). However, sone servers may
have constant tag code mappi ngs and no search option at all.

* All return blocks are | ess than 2000 bytes | ong.

REQUI RED DOCUVENTATI ON

TAGLI ST ;- List of tag nanmes supported by the interface. The list
; should preferably contain engineering units etc.

REFERENCES
Cener al
TagData

CONNECTI ON POl NTS

SUBSCRI BE Get I nfo
* Used to retrieve infornation about interface. Subscribable,
changes in configuration (nunber of tags) will be reported to
all subscribing clients. Note that mappi ng cannot change during
connection tine as reuse of tag codes are not all owed.

* The first fields are the nunber of tags supported by the
interface and what search keys it supports (see Get TagCodes).

61162-420/FDIS O IEC(E) - 83 -

* The instance code can be used to check if the configuration of
the server MAU has changed fromthe |ast invocation. It shall ‘be
incremented each time the _mapping_ between tag codes and tag
names has been changed (i.e., constant code shows that the
mappi ng i s constant). Note that increment or decrenent in tag
number do not inply that the mappi ng has changed. The val ue zero
nmeans that the mappi ng changes each time the server MAU
restarts. Reuse of tag codes is not allowed during server MAU
life-tine.

* The conformance flags defines what additional extensions to the
interface that are available. The inc/dec flags may or rmay not
cause the instanceNo value to be zero (i.e., it is possible to
have changi ng nunber of tags where the mappi ng between each tag
and tag code is kept constant => instanceNo i s constant
non- zer o).

* The certificates field specify if the device has been certified
with respect to data authentication and data quality control. The
user need to check the manufacturer and equi pment type to get
hol d of the relevant certificates.

* The unit state codes indicate state of the physical unit generating
data. Errors in this (other values then SC NORVAL — zero) neans that

all tags are stuck at last value. No further errors will be generated.
QUTPUT

wor d32_m noOf Tags Nunmberof tags in interface

TagKeyCode keys Search keys supported

wor d32_m i nst anceNo i nst ance/ versi on code

Conf ormance conformance ; Conformance | evel

Certificates certified ; QA certificates flags

St at eCode unitState ; state of physical unit

Bl ockCk ok : true if data block is valid
* Precondition

none

* Postcondition
returns information. unitState will indicate if the interface can be
used or not.

* Used to retrieve numeric tag codes for specified search pattern.
The first two input nunbers are used to continue upload. Sone
interface instances may have this function as a dummy, in which
case it always returns NOT_| MPLEMENTED.

| NPUT

int32_m startlindex ; Start returning records here

TagKeyCode keyType ; Type of key used

[wor d16_n1 1500] TagKey key ; Search key and/or define set
QUTPUT

wor d8_m st atus ; Request status

bool _m nor e : More hits

int32_m endl ndex : The hit index of the | ast code

TagSet set Code ; The set code if set requested

[word16._m 48] Tagld ids Ret urned t ags
* Precondition
* keyType nust be one of the |legal key types for this interface.
* The startlndex entry shall be zero for first call on new
search. To get nore entries than can be returned by one call,
startlndex shall be set to the previously returned endl ndex
and key kept constant for follow ng calls.

* Note that tag names can be aliased and that the sane number
may appear several tines in different named ids.

* Postcondition

-84 - 61162-420/FDIS O IEC(E)

* status is zero for everything all right other error codes for
status are:

BAD KEY (= 1), Illegal key type (nore than one key or unsupported
key) .

— BAD_STRING (=2), Search key could not be interpreted (errors).

— NOT_I MPLEMENTED (=3), function not inplenented

— SET_NOT_SUPPORTED (=4), returns valid codes, but defines no

set.

* nore is true if there nmay be nore hits. endlndex specifies the
internal index of the next tag to be searched. Note'that
startlndex and endlndex is used to point into the server's
internal data base and may not have any externa
interpretation

* Note: Search on one tag nunber shall result in nmore than one hit if
several tag names (e.g., one yard tag, one internal tag and one
p-tag) is napped to the same tag code

* Used to retrieve a nunber of tag information entries.

| NPUT

[word16_m 22] TagNunber tagCode ; Code nunbers
QUTPUT

[wor d16_m 22] Tagl nf o info ; Returned info

* Precondition
none

* Postcondition
Returns the nunber of tags that were *found*. This may be |ess
than that requested, if sone requested codes are undefined.
Check nunbers to be sure of mapping. Non-returned nunbers mean
that the tag number does. not exist.

* Used to retrieve a nunmber of values using an array of tag codes.
This can be used on all standard tags that use f64 fornat.

| NPUT

[wor d16_m 82] TagNurnber t agCodes
QUTPUT

[wor d16_m 82] TagVal ue val ues

* Precondition
none

* Postcondition
Return all tags found (may be | ess than requested if sone
request ed codes are undefined). Check state code to verify
validity of values and numbers to check existence of tags.

E.17.6 /Interface PCCTagText

I NTERFACE PCCTagText
* This interface contains additional functionality to PCCTagDat abase
to read text strings.

* Revi sion history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First I EC CDV rel ease

VERSI ON 1.2

DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W6

USAGE

61162-420/FDIS O IEC(E) - 85—

* Use together with PCCTagDat abase

* All return blocks are | ess than 2000 bytes | ong.

REQJI RED DOCUMENTATI ON

TAGLI ST ; List of tag names supported by the interface. The |ist
; should preferably contain engineering units etc.

REFERENCES
Cener al
TagDat a

FUNCTI ON Cet TagText
* Used to retrieve a nunber of tag text strings using an array of
tag codes. This can be used on all standard tags that use text format.

| NPUT

[wor d16_m 24] TagNunber t agCodes
QUTPUT

[word16_m 24] TagText val ues

* Precondition
none

* Postcondition
Return all tags found (may be | ess than requested if sone
requested codes are undefined). Check state code to verify
validity of values and nunbers to check existence of tags.

E.17.7 Interface PCCTagStream

| NTERFACE PCCTagStream
* This interface contains additional functionality to PCCTagDat abase
to read a defined stream address.

* Revision history:
010102 1.2 First IEC FD S rel ease
990831 1.1 First |EC CDV rel ease

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TC80/ W6

USAGE
* Use together with PCCTagDat abase

REQJI RED DOCUMENTATI ON

TAGLI ST ; List of tag nanes supported by the interface. The list
; should preferably contain engineering units etc.

REFERENCES
Cener al
TagDat a

FUNCTI ON Cet TagStream
* Used to retrieve one tag stream The client supplies a stream
address and the server, if it accepts the tag, is expected
to try to connect to the address after conpleting the call. The

- 86 — 61162-420/FDIS O IEC(E)

client shall have established the |listening address prior to the
call. The timeout is the maxi mum del ay before the client
shoul d expect a conenction to be nade.

* The server will send data as soon as the connection has been
established and will close the |link when the | ast octet has been
sent .
| NPUT
TagNunber t agCode
address_m addr ess ; Address of TP network
wor d32_m nnn : Node address
TPSI nst ance port ; Additional port information
OUTPUT
St at eCode state ;. Current state or error
wor d32_m ti meout ; Timeout for connection attenpt

* Precondition
Client has established |istening address.

* Postcondition
Returns ok if tag is found and server is ready to send. The
followi ng state codes has special neani ng:
SC_NORMAL: Tag is ok and port will be connected to inmediately.
SC_NOT_AVAI LABLE: Server is currently not available (e.g., other user)

E.17.8 Interface PCCTagNetsearch

| NTERFACE PCCTagNet sear ch
* This interface contains additional functionality to search network
via broadcast for tags.

* Revision history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First IEC CDV rel ease

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W36

USAGE
* Use together with PCCTagDat abase. Myst users of the interface
shoul d define two interfaces: One for sending (CONNECT) and one
for receiving (ACCEPT). Note that they are specified to operate on
t he Anonynous Broadcast MAU address ABCML.

REFERENCES
Cener al
TagDat a

CONNECTI ON ‘PO NTS

ANONYMOUS BROADCAST SendReq
* Used to send a request for certain tag names. The functionality
is simlar to the general PCCTagDat abase. Get TagCodes functi on,
except that only the MAU nane of the keeper of the tag is
returned and the return value nust be retrieved through the
Get Ack MCP. Further investigations nmust be done on that MAU.

QUTPUT
TagKeyCode keyType ; Type of key used
[word16_m 400] TagKey key ; Search key

ANONYMOUS BROADCAST Get Ack
* Used to receive a SendReq acknow edgenent. Note that the search

key is repeated.

QUTPUT
wor d8_m status ; Request status

61162-420/FDIS O IEC(E) - 87 —

TagKeyCode keyType ; Type of key used
[wor d16_m 400] TagKey key ; Search key
int32_m hits : Nunber of hits
[32] char8_m mauName ; reporting MAU

* Precondition
Sonebody sent a request.

* Postcondition
Returns the MAU nanme and the nunber of hits.

E.17.9 Interface PCCTagAttributes

| NTERFACE PCCTagAttri butes
* This interface conponent contains additional functionality for reading
tag attribute values froma data base

* Revision history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First I EC CDV rel ease

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W6

USAGE
* This interface allows the | ook up of attributes to tags. It
requi res the use of the CTagsDatabase interface for getting tag
codes.

* Attributes have a scope of the application they reside in. One
attribute can, however, be valid for only one (or none)
tags. There is a function to retreieve all attributes for one tag
and there is a function to retrieve infornation on
attributes. Sonme attributes can be given constant values for al
appl i cations

REFERENCES
Cener a
TagDat a

Used to retrieve attribute codes for specified tags. NO TAG
returns all attributes.

I NPUT

TagNunber tag ; For what tag

int32.m f rom ndex ; return nore attributes
QUTPUT

[wordl6_m 40] TagAttrinfo ; return val ues

int32_m next | ndex ; signal nore attributes

* Precondition
from ndex shall be zero for first call. Tag code nust be valid
or NOTAG If nore attributes than can be returned by one call
from ndex can be set to last return value of nextlndex in
follow ng calls.

* Postcondition
No val ues may be returned for invalid tags or attribute codes.
Status field in each informati on block defines validity.
nextlndex is non-zero if nore attributes can be retrieved.

Used to retrieve a nunber of attribute values, including alarm
informati on, using an array of tag codes. This call will only
return tags that have associated attribute values. State codes

— 88 —

61162-420/FDIS O IEC(E)

will give any error nessages
| NPUT
[wor d16_m 40] TagNunber t agCodes
[word16_m 40] TagAtt r Nunmber attr Codes
int32_m f rom ndex
QUTPUT
[word16_m 96] TagAtt r Val ues val ues
int32_m next | ndex

* Precondition
Any conbi nation of tag codes and attribute codes can be
used. The returned values are the intersection between the two
groups (tag nunmber AND attribute nunber). from ndex is used if
there are nore values to be returned. It shall be zero on first
call and can be nextlndex on subsequent calls.

* Postcondition
Al'l valid combinations are returned
nore conbi nati ons are possible
repreated calls to retrieve al

next |l ndex is non-zero if
In this case one can use
val ues.

E.17.10 Interface PCCTagSubscribe

| NTERFACE PCCTagSubscri be
* This interface contains the basic functionality for
subscribing to tag val ues.

* Revision history:
010102 1.2 First IEC FD' S rel ease

990831 1.1 First IEC CDV rel ease
VERSI| ON 1.2
DATE 2001-01-02

RESPONSI BLE | EC TCB80/ W6

USAGE
* This interface all ows subscribing to standard tag val ues.
requi res the use of 'PCCTagDat abase and PCCTagDat aSet .

REFERENCES
Cener a
TagDat a

iNDIVIDUAL SUBSCRI BE TagSubscri be
* Subscri'be on values on a tine base.

I NPUT
TagSet id ; Set id
Ti me mnlinterval ; Mn interval for updates
Ti me maxl nterval ; Max interval for updates
QUTPUT
TagSet id ; Set id
wor d16_m status ; Return status
[wordl16_m 82] TagVal ue value ; Data

* Precondition
Set nust be defined. Several subscriptions can be nade on
different sets. Set should be small enough for return val ue
subscription principle is determ ned by tineouts:
On change: minlnterval is zero
Wat chdog: maxl nterval non-zero
Limt nessages: mnlnterval non-zero

The

* Postcondition

Initial call returns status code. The foll owi ng are used:

61162-420/FDIS O IEC(E) -89 —

BAD SET (= 1), Illegal set code

SET_EMPTY (=2), No subscribe-able data in set
— TOO_SHORT (=3), To small interval set

— TOO_ MJUCH (=4), Set too large to send

* The transaction should be cancelled if a non-zero status code
is returned. This to avoid having pending transactions in‘the
system

* Note that a unit down does not cause individual tag nessages to
be sent. Note also that changes in tag is value, alarmor state
changes.

* Subscription acknow edgenent contains from one and upwards
data entries. Several messages will be sent immediately after each
other if there is not enough roomin one nessage.

E.17.11 Interface PCCTagWrite

| NTERFACE PCCTagWite
* This interface conponent contains the additional functionality for

witing tag based data itens to a data base:

* Revision history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First IEC CDV rel ease

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W6

USAGE
* This interface allows witing tag values based on interface specific

nuneric tag codes. It is an add-on to the PCCTagDat abase
interface. It may require user authentication.

REFERENCES
Cener al
TagDat a
User Aut h

* Used to wite and/or read values to a nunmber of tags. The input
field contains data for wite or function type tags. The output
field contains data for read or function type tags.

I NPUT
[word16_m 32] TagVal ue inVal ue ; Input value

QUTPUT
UaSt at us authStatus ; Authorisation status
[word16_m 32] TagVal ue out Val ue ; Any out put

* Precondition
| nput val ues nust be defined for relevant tags. Values for
non-i nput tags are ignored. Al attributes (alarm tine, value)

can be set.

* Postcondition
Return all tags with state code. Check state code for status on just

witten data. For read data the state code is as nornmal. The authState

code is non-zero if the authentication failed (usually only for
wite)

-90 - 61162-420/FDIS O IEC(E)

E.17.12 Interface PCCTagAlarm

| NTERFACE PCCTagAl arm
* This interface conponent contains the basic functionality for
handeling alarns on a tag nane basis.

* Revision history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First IEC CDV rel ease

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W6

USAGE
* This interface allows subscribing to alarnms and acknow edgenent of
alarnms. It requires a user authentication nodule in addition to
the use of the basic PCCTagDat abase conponent.

REFERENCES
Gener al
TagDat a
User Aut h

| NDI VI DUAL SUBSCRI BE Cet Al ar s
* Subscribe on new alarns on a given set of tags. Each client can
subscribe on a different set, ‘each client can al so subscribe on
a nunber of sets, each set representing one transaction.

I NPUT
TagSet Code id ; Set/id
QUTPUT
TagSet Code id 7 Set id
wor d16_m oStatus ; Operation status
[word16_m 40] TagAl arnValue alarns ; Alarns

* Precondition
Set nust be defined. Several subscriptions can be nade on
different sets.

* Postcondition
Initial call returns only status code. The follow ng are used:
— BAD_SET (= 1), Illegal set code
— SET_EMPTY (=2), No subscribable alarnms in set
— AUTHORI SATI ON (=3)

* The.transacti on should be canceled if a non-zero status code
is returned. This to avoid having pending transactions in the
system

* Subscription acknow edgenent contains fromone and upwards
alarmentries.

* Acknow edge one al arm

| NPUT
TagNunber id ; The tag
Al ar nSequence seq ; The alarm

QUTPUT
UaSt at us ast at us ; Authorisation status
wor d16_m oSt at us ; Operation status
TagVal ue val ue ; New value for tag

* Precondition
Tag and sequence nust be defined.

61162-420/FDIS O IEC(E) -91 -

* Postcondition
Status code reports success (Zero) or failiure, value reports val ue
after acknow edgenent .
— BAD_TAG (= 1), No such tag
— BAD_SEQ (=2), No such alarm
— BAD_AUTH (=3) Authorisation failed, check aStatus.

E.17.13 Interface PCCTagSet

| NTERFACE PCCTagDat aSet
* This interface contains functionality for nanipulating tag
sets. The basic set can be defined by the Get TagCodes MCP and
nodi fied here. It can also be defined here

* Revision history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First IEC CDV rel ease

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W6

USAGE
* Used to inspect or nodify tag sets.

* Al sets associated with one client is cleared when a client
di sconnects.

* A set may be renoved if it is enpty.

* A set can be cancelled by the only client that use it.

REFERENCES
Cener a
TagDat a

* Return tags in a tag set.

I NPUT

TagSet set Code ; The set code

int32_m start | ndex ; Start returning records fromthis hit
QUTPUT

wor d8_m status ; Request status

bool _m nor e ; More hits

int32.m endl ndex ; The hit index of the |last code

[word16_m 256] TagNunber codes ; Returned tags
* Precondition

* The startlndex entry shall be zero for first call on new
search. To get nore entries than can be returned by one call
startlndex shall be set to the previously returned endl ndex
and key kept constant for follow ng calls.

* Postcondition

* status is zero for everything all right other error codes for
status are:

— BAD_SET (= 1), Illegal set code

— NO_MORE (= 2), No nore tags

* more is true if there may be nore hits. endlndex specifies the
internal index of the next tag to be searched. Note that
startlndex and endlndex is used to point into the server's
internal data base and may not have any externa

interpretation.

-92 - 61162-420/FDIS O IEC(E)

* Renove tags froma set

| NPUT

TagSet set Code : The set code

[word16_m 256] TagNunmber codes ; The codes to be renoved
QUTPUT

wor d16_m st atus ; Request status

int32_m r emoved ; Tags renpved

int32_m | eft ; Tags left

* Precondition
set Code nust contain valid infornmation. No tags nean delete whol e
set.

* Postcondition
+ status is zero for everything all right other error codes for
status are:
— BAD_SET (= 1), Illegal set code
— NOT_OMNER (= 2), Another application defined the set
— FI XED_SET (=3), Set is not nodifiable
+ renoved and | eft counts the tags actually renoved and the ones
left in the set.

* Adds tags to a set or defines new set

| NPUT
TagSet set Code ; The set code or null for new
[word16_m 256] TagNunmber codes ; The codes to be added

QUTPUT
TagSet set Code ; Set definition
wor d16_m st at us ; Request status
int32_m added ; Tags added

* Precondition

* set Code and codes nust contain valid information. SetCode null
neans define new set.

* Postcondition

* status is zero for everything all right other error codes for
status are:

— BAD_SET (= 1), Illegal set code

— NOT_OMNER (= 2), Another application defined the set

— FI XED_SET (=3), Set is not nodifiable

* added counts the tags actually added to the set.

E.17.14 Interface PCCTagAttributeWrite

| NTERFACE PCCTagAttributeWite
* This interface contains additional functionality for witing
tagattribute values froma data base.

* Revision history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First IEC CDV rel ease

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W6

USAGE
* See PCCTagAttri butes

REFERENCES

61162-420/FDIS O IEC(E) - 93 -

Cener al
TagDat a
User Aut h

CONNECTI ON POl NTS

REFERENCES
PCCTagDat abase ; Al connection points

Used to set a nunber of attribute values, including alarm
information, using an array of tag codes.

| NPUT
[word16_m 100] TagAttrVal ues attrCodes

QUTPUT
UaSt at us aut hStatus ; Authentication status
[word16_m 100] St at eCode result

* Precondition
Tags are identified with their values. The witing application
shoul d have aut henticated the user and consol e.

* Postcondition
Aut henti cation status returned overall. I'ndividual status
per attribute code position.

- 94 - 61162-420/FDIS O IEC(E)

Annex F
(normative)

Navigational interfaces

F.1 IEC 61162-1 relay function

IEC 61162-1 contains requirements for data communication between maritime electronic
instruments, navigation and radio-communication equipment when. interconnected via an
appropriate system.

Supporting one-way serial data transmission from a single talker to one or more listeners, the
standard defines 63 different messages or so-called sentences for data transfer. The purpose
of this standard is to supply appropriate data types, information classes and an interface for
transmission of these sentences via the IEC 61162-4 protocol. This companion standard refers
particularly to clause 6 of IEC 61162-1. It supports the transmission of all defined sentence
types to ensure full compatibility.

The following clauses describe each of the interfaces and their connection points.

F.2 Interface PCCNMEAIn

The NMEAIn interface is used to connect a serial input stream of IEC 61162-1 or IEC 61162-2
telegrams to the IEC 61162-4 protocol. Telegrams can be read by an IEC 61162-4 client from
one or more port addressed by the port number (<nn>). The interface provides the serially
received telegrams in two forms: 1) Via a SUBSCRIBE connection point where clients can
address all IEC 61162-1/2 telegrams (or of a particular telegram formatter) of a given port; or

2) by means of a FUNCTION connection point where clients can obtain particular telegrams on
demand.

The interface owns the following connection points:

F.2.1 READ NoOfPorts

Used to retrieve the number of available ports. Each port will have a respective subscribe-able
Port_<nn> connection point.

F.2.2 FUNCTION GetPortDescription

Used to retrieve the description of a port. This is an informal text string, usually hard coded in
the server.

F.2.3 FUNCTION NoOfSentences

Used to retrieve a_.number of supported sentences in GetSentence entry. Sentences and
senders are used to select the sentence for buffering.

F.2.4 FUNCTION GetListOfSentences
Used to retrieve the description of IEC 61162-1/2 telegrams supported by buffered

GetSentence reads. Telegrams and senders are returned in an array. The index in the returned
array starts at zero where the user input is startindex.

F.2.5 FUNCTION GetSentence

Used to retrieve a specific IEC 61162-1/2 telegram from a specific port. The last received
telegram with given formatter/sender is returned.

61162-420/FDIS O IEC(E) - 95—

F.2.6 SUBSCRIBE Port_<nn>

This connection point is provided as an event-driven hook for reading IEC 61162-1/2 telegrams
from a specified port. A number of these connection points will be available. The number and
names are defined by NoOfPorts. The names of the connection points are formed like
"Port_01" where 01 identifies the port number. The description of the Port of the event is
retrieved by GetPortDescription.

F.2.7 SUBSCRIBE Port_<nn>_<fmt>
This connection point is similar to the last one (Port_<nn>). However, it only provides

sentences of the given formatter (<fmt>). For example, the following connection point might
exist: "Port_02_VTG".

NOTE These connection points are optional. Clients should use Port_<nn> if no appropriate connection point for
the required formatter is available.

F.3 Interface PCCNMEAOut
This interface is used to write IEC 61162-1/2 telegrams to one or more serial ports. Clients can

use a set of NON-ACKNOWLEDGE-WRITE connection points to write their data to a specified
port.

The interface contains the following connection points:

F.3.1 READ NoOfPorts

Used to retrieve the number of available ports. Each port will have a respective subscribe-able
Port_<nn> connection point.

F.3.2 FUNCTION GetPortDescription

Used to retrieve the description of a port. This is an informal text string, usually hard coded in
the server.

F.3.3 NONACKED-WRITE Port_<nn>

This connection point is provided to write IEC 61162-1/2 sentences to serial line port. A
number of these connection points will be available. The number and names are defined by
NoOfPorts. The names of the connection points are formed like "Port_01" where 01 identifies
the port number. The description of the Port of the event is retrieved by GetPortDescription.

- 96 - 61162-420/FDIS O IEC(E)

F.4 The IEC 61162-1/2 related companion standard documents

F.4.1 The IEC 61162-1/2 data type description

DATA TYPES NMEA
* Definition of data types necessary to allow transmission of IEC 1162-1/2
(aka. NMEA 0183) sentences over the | EC 61162-4 protocol .

* Sentence structure is defined in follow ng reference (or a later revision
i f applicable):

* | EC 61162-1: 1995, Maritinme navigation and radi o communi cation

equi pnent
and systens — Digital interfaces — Part 1: Single talker and nultiple
|isteners

* Revision history:
010102 1.2 First IEC FD S rel ease
990831 1.1 First I EC CDV rel ease

VERSI ON 1.2

DATE 2001-01-02

RESPONSI BLE | EC TC80/ W6
REFERENCES

none

I NTERPRETATI ON Sentence OF [82] char8_m
* Contains an | EC 61162-1/2 nessage. Contents defined by | EC 1162-1
st andar d.

INTERPRETATI ON Sent enceFormatter OF [3]char8_m
* Used to identify I EC 61162-1 nessage.

I NTERPRETATI ON Sender OF [2] char8_m
* Used to identify the sender of a | EC 61162-1 nessage.

| NTERPRETATI ON Port No OF wor d16_m
* Used to identify multiple ports on a server. Ports are nunbered
from1 and upwards.

I NTERPRETATI ON Description OF [64] char8_m
* General description string. May be null ternnated.
This type was defined in the data type definition MTS.

| NTERPRETATI ON Bool ean OF word8_m
* Atrue/false type. Zero is false, non-zero true. For testing
TRUE check that the type is not FALSE.
This type was defined in the data type definition MTS.

TRUE
FALSE

1

I NTERPRETATI ON Bl ockCk OF Bool ean
* This type says if contents of data block are all right.

* TRUE : contents are all right
FALSE: contents are unreliable

* This type was defined in the data type definition MTS.

61162-420/FDIS O IEC(E) - 97 -

F.4.2 Description of Interface PCCNMEAIn

| NTERFACE PCCNVEAI n
* This docunent contains the specification for the | EC 61162-4 Conpani on
Standard for receiving | EC 61162-1 sentences over the
| EC 61162-4 protocol.

* Revision history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First IEC CDV rel ease

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W6

USAGE
The nessage nanagenent is performed by the connection points:
— NoOFPorts, NoOF Sentences and GetLi st Of Sent ences.
Port _<nn> provides event driven connection. GetSentence is
provided for the client if sporadic val ues are/needed.

* Port_<nn> re-transmts all sentences received on the specified
port. NoO'Ports can be called to find the nunber of ports
supported. <nn> is always two digits, i.e., fromO01l to the
nunmber of ports supported.

* NoOf Sentences return zero if no sentences are buffered by the
interface. If it returns non-zero CetlListOf Sentences can be used
to get hold of the sentence fornmatters and senders supported by
the interface. Al supported sentences/senders will be allocated one
buffer location so that the | ast' received sentence of specified
formatter/sender always is available. The valid field may indicate
invalid nmessage if, e.g., no nessage have been received after
power up. The list of buffered sentences may be dynamically
changed by the interface. No supported sentence shall, however, be
renoved.

* Note that the interface does not check the syntax or semantics of
the sentence prior to outputting it on the I EC 61162-4 networKk.

ATA TYPES

REFERENCES
NVEA VERSI ON 1.2

READ NoOrf Port s
* Used to.retrieve the nunber of available ports. Each port wll
have a respective subscribe-able Port_<nn> connection point.

QUTPUT
PortNo noCOf Ports

* Precondition
none

* Postcondition
returns the nunber of serial ports available on this server.

* I nformal Expl anation
none

’ FUNCTI ON Get Port Descri ption
* Used to retrieve the description of a port. This is an infornal
text string, usually hard coded in the server.

I NPUT
Port No noCf Por t

- 98 - 61162-420/FDIS O IEC(E)

QUTPUT
Description description
Bl ockCk ok

* Precondition
1 <= noOPort <= NoOFPorts

* Postcondition
if ok then nmessage is returned
el se precondition is violated

* I nformal Expl anation
description is a free text description used for informal
expl anation of the device connected and sending | EC 61162-1
nessages.

FUNCTI ON NoOF Sent ences
* Used to retrieve a number of supported sentences in Cet Sentence
entry. Sentences and senders are used to sel ect sentence for

buf f eri ng.
| NPUT
Por t No noCf Por t
QUTPUT
wor d16_m noCf Sent ences

* Precondition
none

* Post condi tion
returns the nunber of |IEC 61162-1 sentences/senders buffered by
the interface.

* | nformal Expl anation
returns zero if port is.not present or no sentences are
buf f er ed.

* Used to retrieve the description of | EC 61162-1 sentences supported
by buffered Cet Sentence reads. Sentences and senders are
returned in anrarray. Index in returned array starts at zero
where user input startindex.

| NPUT
Por t No noX Port
wor d16_m startindex
wor d16_m noOf El enent s
QUTPUT
[wor d16_m 20] Sender sender
[wor d16_m 20] Sent enceFormatter formatter
Bl ockCk ok

* Precondition
starti ndex < NoCOF Sent ences
starti ndex + noOfEl ements < NoOf Sent ences

* Postcondition
if ok then bit-w se indicated descriptions are returned
el se precondition is violated.

* I nformal Expl anation
startindex is nunbered from zero.

FUNCTI ON CGet Sent ence

* Used to retrieve a specific I EC 61162-1 sentence froma specific
port. The | ast received sentence with given formatter/sender is
returned.

61162-420/FDIS O IEC(E) - 99 -

| NPUT
Por t No noCf Por t
Sent enceFornatt er sent ence
Sender sender
OUTPUT
Valid valid
Message nmessage
d obal Ti ne tine
Bl ockCk ok

* Precondition
nessage formatter/sender nust have been returned by
Get Li st Of Sent ences. port must be defined.

* Postcondition
if ok then nmessage and time is returned. Validity defined by
val i d.
el se precondition is violated.

* I nformal Expl anation
The server shall store the |ast received nessage of all
supported formatter/sender types in separate buffers.

SUBSCRI BE Port _<nn>

* This connection point is provided as an event-driven hook for
reading | EC 61162-1 nmessages from a specified port. A nunber of
these connection points will be available. The nunber and nanes
are defined by NoOPorts. The names of the connection points are
fornmed like "Port_01" where 01 identifies the port nunber. The
description of the Port of the instance is retrieved by
Get Port Descri ption.

QUTPUT
Sentence sentence

* Precondition
none

* Postcondition
When connection i's established, the subscription can be started.

* I nformal Expl anation
The data will be transmtted fromthe server MAU when avail abl e.

SUBSCRI BE Port _<nn>_<fmt>

* This connection point is simlar to the last one (Port_<nn>). However, it
only provi des sentences of the given formatter (<fnt>). Formatters can
be any of those defined by | EC 61162-1 (table 5, approved sentence
formatters). For exanple, the follow ng connection point may
be part of the interface: "Port_02_VTG'.

* Note: These connection points are optional. Cdients should use Port_<nn> if
no appropriate connection point for the required formatter is avail able.
QUTPUT

Sent.ence sent ence

* Precondition
none

* Postcondition
When connection is established, the subscription can be started.

* I nformal Expl anation
The data will be transmtted fromthe server MAU when avail abl e.

- 100 — 61162-420/FDIS O IEC(E)

F.4.3 Description of Interface PCCNMEAOut

| NTERFACE PCCNVEAQUt
* This docunent contains the specification for the Pl SCES Conpani on
Standard for sending NMEA 0183 sentences over the Pl SCES protocol.

* Revision history:
010102 1.2 First IEC FD' S rel ease
990831 1.1 First IEC CDV rel ease

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W6

USAGE
The interface is simlar to NMEAIn in that it supports sone of the
same nessage managenent entries. The basic difference is that it
allows an I EC 61162-4 application to send | EC 61162-1 sentences out on a
serial port.

* Port_<nn> sends all sentences witten to the 'connection point. It
wites it on port nn, NoOfPorts can be called to find the nunber
of ports supported. <nn> is always two digits, i.e., fromOl to

t he nunber of ports supported.

* Note that the interface does not check. the syntax or semantics of
the sentence prior to outputting it on the serial line.

DATA TYPES

REFERENCES
NVEA VERSI ON 1. 2

READ NoOf Ports
* Used to retrieve the nunber of available ports. Each port will
have a respective wite-able Port_<nn> connection point.

QUTPUT
PortNo noOf Ports

* Precondition
none

* Postcondition
returns the nunber of serial ports available on this server.

* | nformal Expl anation
none

’ FUNCTI ON Get Port Descri ption
* Used to retrieve the description of a port. This is an infornal
text string, usually hard coded in the server.

| NPUT
Por t No noCf Por t
OQuUTPUT
Description description
Bl ockCk ok

* Precondition
1 <= noOPort <= NoO Ports

* Postcondition
if ok then nmessage is returned
el se precondition is violated

* | nformal Expl anation

61162-420/FDIS O IEC(E) - 101 -

description is a free text description used for informal
expl anation of the device connected and sending | EC 61162-1
nessages.

NONACKED- WRI TE Port _<nn>

* This connection point is provided to wite | EC 61162-1 sentences to
serial line port. A nunber of these connection points will be
avai | abl e. The number and nanes are defined by NoOf Ports. The
names of the connection points are formed |ike "Port_01" where 01
identifies the port nunber. The description of the Port of the
instance is retrieved by GetPortDescription.

I NPUT
Sentence sentence

* Precondition
none

* Postcondition
Sentence witten to port in the order that .the connection point
is witten to.

* I nformal Expl anation
Note that several clients in principle can connect to the same
port. This may be inhibited by the use of passwords.

F.4.4 Application Description

APPLI CATI ON PACNMEARel ay
* Ceneral MAU with serial line input or output ports that can read
| EC 61162-1 sentences and nake them available to the network or put
themout to the serial ports:

* The respective nunber of ports configured for output or input can
be read through the interfaces.

* Revision history:
010102 1.2 First IEC FDI S rel ease
990831 1.1 First | EC CDV rel ease

VERSI ON 1.2
DATE 2001-01-02
RESPONSI BLE | EC TCB80/ W36

USAGE
* See referenced interfaces, This is an application acting as a
relay between | EC 61162-1 tal ker and |istener ports

REFERENCES

PCCNVEAI n
PCCNVEAQut

| NTERFACES

ACCEPT NMEAI'n
* This interface is used to read | EC 61162-1/2 sentences buffered in the
system This application will automatically build a list of the
sentences it has received and make them avail abl e through
Get Li st Of Sent ences.

| NTERFACE COMPONENT PCCNMEAI n

ACCEPT NMEACQut
* This interface can output | EC 61162-1 sentences on configured
serial line ports.

| NTERFACE COVPONENT PCCNMEAI n

